From micro to macro : the story of our unfolding Universe

URJIT A YAJNIK, Physics Department, IIT, Bombay

The Year of Physics, IISc Bangalore, November 19, 2005

Micro Macro

Outline

- The forebears
- The story of light

Outline

- The forebears
- The story of light
- The story of matter ... and anti-matter
- The story of Dark Matter

Outline

- The forebears
- The story of light
- The story of matter ... and anti-matter
- The story of Dark Matter
- There is also Dark Energy

Moving the earth

Archimedes

(440 BC?=year 220 of the Buddha)

A true ancestor of Physics as Mathematical Philosophy

Law of floatation ... "Eureka"

Laws of lever ...

Moving the earth

Archimedes

(440 BC?=year 220 of the Buddha)

A true ancestor of Physics as Mathematical Philosophy

Law of floatation ... "Eureka"

Laws of lever ... "Give me a rod long enough and a fulcrum and I will move the earth"

Moving the earth

Archimedes

(440 BC?=year 220 of the Buddha)

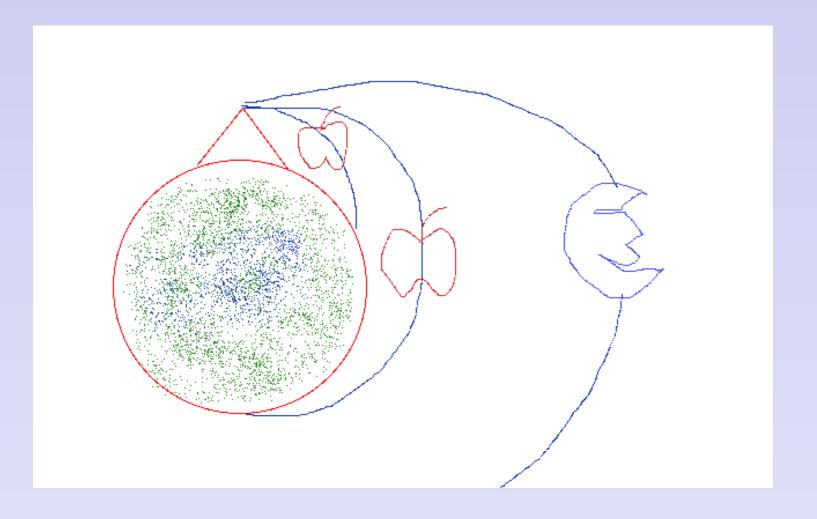
A true ancestor of Physics as Mathematical Philosophy

Law of floatation ... "Eureka"

Laws of lever ... "Give me a rod long enough and a fulcrum and I will move the earth"

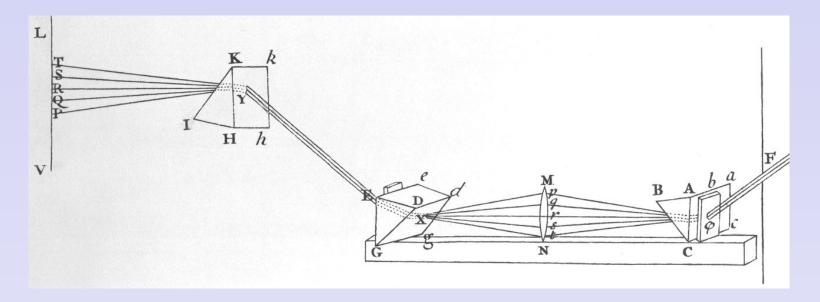
Extending the scale of applicability of a physical law : From pebbles to the whole earth

The apple and the Moon

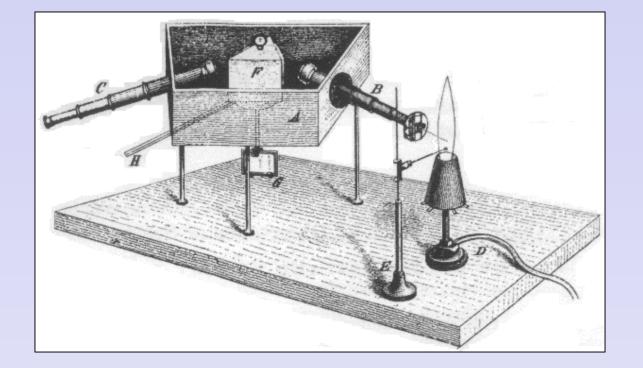


Newton is famous for having discovered the Law of Gravitation. Comparing the fall of the apple with the "falling" of the Moon towards the Earth

"Moon falls 0.0045 ft/sec towards the earth and is 60 earth radii away"


"Speed of an apple at 1 earth radius increases 32 ft/sec in a second"

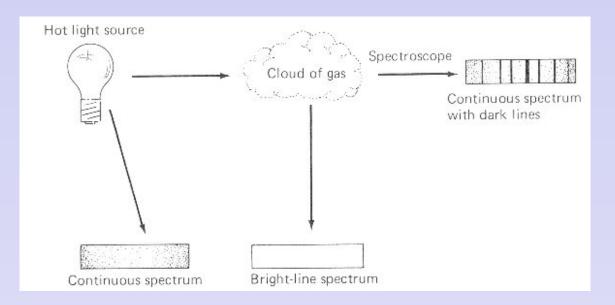
Unification of the heavenly with the terrestrial



The story of light

The spectrum of sunlight

Spectra in the laboratory : glowing metals


Spectroscope (1860)

Robert Bunsen

Micro Macro

Complementarity of emission and absorption

Gustav Kirchoff

Kirchoff's challenge (1859)

To prove that the Emissivity of a glowing substance was a universal function only of its temperature.

More precisely,

$$\frac{\mathcal{E}(\nu)}{A_{\nu}} = J(\nu, T)$$

It is necessary to factor out the absorptivity A_{ν} . Ideal substance for which $A_{\nu} = 1$ is called Black Body. An enclosure with perfectly reflecting walls (and a small exit hole) is Black Body and is well approximated by a cavity made in a metalic block.

Micro Macro

[•]An act of desperation ...

I had to obtain a positive result, under any circumstances and at whatever cost'

Planck, in 1931, recalling his situation in 1900

Planck's formula

By 1900, Lummer and Pringsheim and separately, Rubens and Kurlbaum at Berlin were beginning to explore the spectrum into the far infrared.

Planck's formula

By 1900, Lummer and Pringsheim and separately, Rubens and Kurlbaum at Berlin were beginning to explore the spectrum into the far infrared.

In October 1900 on a Sunday afternoon visit by the Rubens to the Plancks, Heinrich Rubens informs Planck that most likely,

 $\rho \propto T \quad \text{for } \nu \to 0$

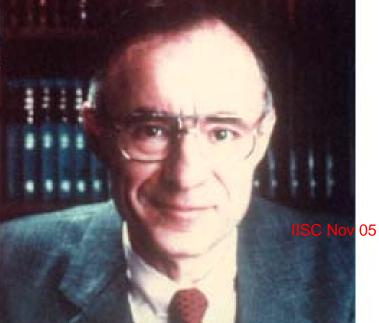
It seems this was the remark which electrified Planck into arriving

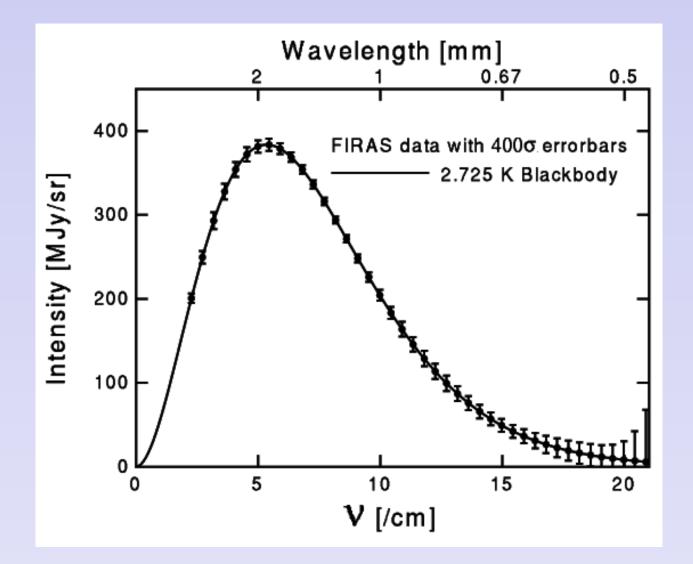
Micro Macro

at the law

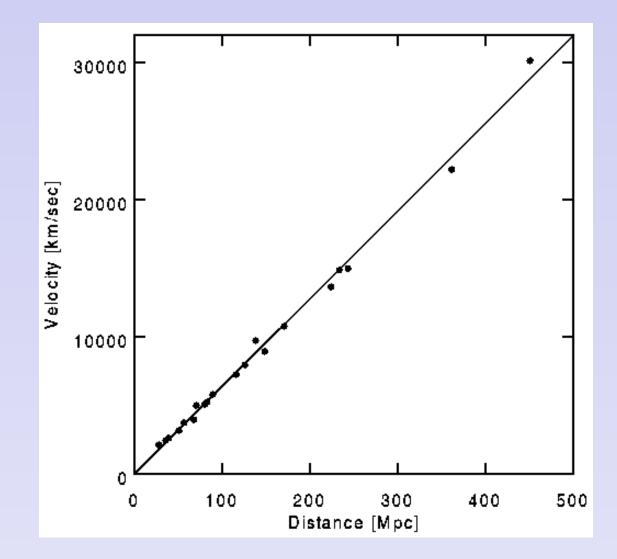
$$\rho(\nu, T) = \frac{8\pi\nu^3}{c^3} \frac{1}{e^{h\nu/kT} - 1}$$

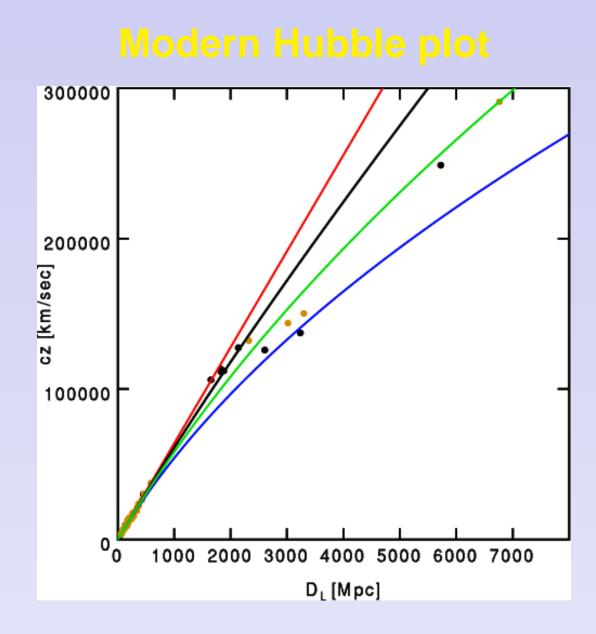
Micro Macro


DISCOVERY OF COSMIC BACKGROUND

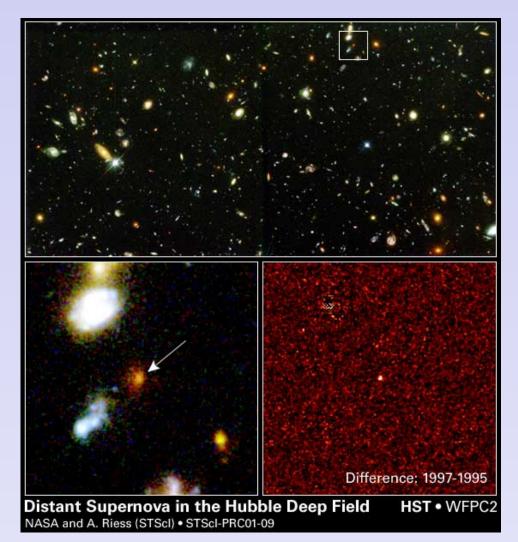

Microwave Receiver

Micro Macro


The spectrum of the Big Bang Universe (CMBR)



Micro Macro


The Big Bang

For most galaxies, the Hydrogen spectrum is shifted into the red. Independent measurements of distances to galaxies and their redshifts revealed a pattern. Edwin Hubble drew a line through this plot.

A blast from the remote past

Show movie

Micro Macro

[-1cm]The Cosmic Expansion

Extrapolated sequence backwards in time

 Ionised Hydrogen 	1 eV	$10^4 \ \mathrm{K}$
 Free neutrons and protons 	1 MeV	10^{10} K
 Quark-Gluon plasma 	1 GeV	10^{13} K
 Electroweak scale 	100 GeV	$10^{15}~{ m K}$
 Quantum Gravity 		$10^{19}~{ m GeV}$
Micro Macro		IISC Nov 05

Neutral H formation $\sim 10^5$ years after the Big Bang Relic radiation 10^4 K then; 3 K now

Alpher, Bethe and Gamow (1942)

Gravity = curved space-time

General Relativity the theory of the space-time metric

$$ds^{2} = dt^{2} - R(t)^{2} \{ \frac{dr^{2}}{1 + kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}d\phi^{2} \}$$

k = 0 for flat Universe; $k = \pm 1$ for constant positive or negative curvature

R(t) the Scale factor ... A. A. Friedmann

Equation for R

$$\left(\frac{1}{R}\frac{dR}{dt}\right)^2 + \frac{k}{R^2} = \frac{8\pi}{3}G\rho$$

Equation of state $p = p(\rho)$ required

Radiation dominated Universe :

$$p = \frac{1}{3}\rho \Rightarrow R(t) \propto t^{1/2}$$

Matter dominated Universe :

$$p = 0 \Rightarrow R(t) \propto t^{2/3}$$

Book keeping of Cosmic contents

$$H^2 + \frac{k}{R^2} - \Lambda = \frac{8\pi G}{3}\rho$$

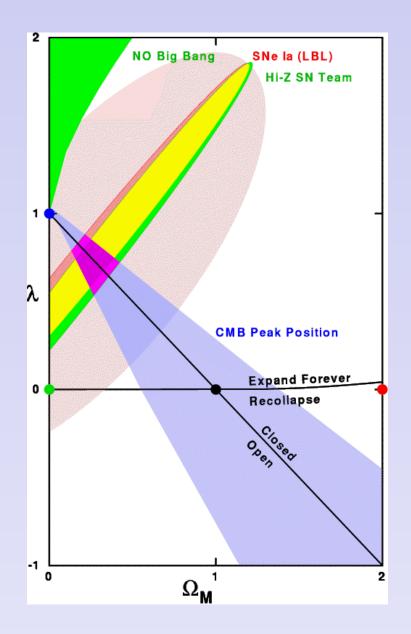
where $\rho =$ Total energy

another way of writing ...

$$1 + \frac{k}{H^2 R^2} = \Omega_\Lambda + \Omega_\rho$$

★ Today LHS seems to be 1

X So in the curvature term, k = 0


Micro Macro

24

Current best fit to data

- **X** Λ term seems to dominate, $\Omega_{\Lambda} = 0.7$
- **X** But most of ρ is not baryons! Let $\Omega_{\rho} = \Omega_{DM} + \Omega_B$
 - **X** Baryons contribute only $\Omega_B = 0.03$
 - ★ $\Omega_{DM} = 0.27$ So much is the "Dark Matter"

How do we know all this?

Micro Macro

Cosmography : main features

Current parameters of the Universe :

- Expansion rate 71 ± 4 (km/s)/MegaParsec
- Size of the visible Universe 3 GigaParsec
- Age of the Universe 13.7 ± 2 GigaYears
- Age at decoupling $380 \pm 7 \times 10^3$ Year

How do we know all this?

Dark Matter and Dark Energy

What can Dark Matter be?

HotDarkMatter : It could have been neutrinos, (Cowsik and McCLelland 1973)

Dark Matter and Dark Energy

What can Dark Matter be?

HotDarkMatter : It could have been neutrinos, (Cowsik and McCLelland 1973) but that would be too light ... Difavoured by latest CMBR data

ColdDarkMatter : Signature of new physics? Supersymmetry?

Matter and anti-matter

Matter and anti-matter

In 1929, trying to find Relativistic wave equation for the electron Dirac hits upon the need for anti-particles.

Every particle has an anti-particle. All associated conserved charges have opposite sign.

Matter and anti-matter

In 1929, trying to find Relativistic wave equation for the electron Dirac hits upon the need for anti-particles.

Every particle has an anti-particle. All associated conserved charges have opposite sign.

Examples :

For the electron there is the oppositely charged positron.
 Positron emission tomography (PET) is now becoming an important diagnostic tool.

Matter and anti-matter

In 1929, trying to find Relativistic wave equation for the electron Dirac hits upon the need for anti-particles.

Every particle has an anti-particle. All associated conserved charges have opposite sign.

Examples :

For the electron there is the oppositely charged positron.
 Positron emission tomography (PET) is now becoming an important diagnostic tool.

• For the neutron, which is electrically neutral, there is antineutron which will not particpate in the same interactions as neutron where the baryon number is relevant. Similarly, its magnetic moment points opposite to its its intrinsic spin, which is opposite to that of the neutron.

- For the neutron, which is electrically neutral, there is antineutron which will not particpate in the same interactions as neutron where the baryon number is relevant. Similarly, its magnetic moment points opposite to its its intrinsic spin, which is opposite to that of the neutron.
- Anti-hydrogen consisting of anti-proton and positron has been created in the lab. We expect that it will have the exact same Balmer lines, Paschen lines ...

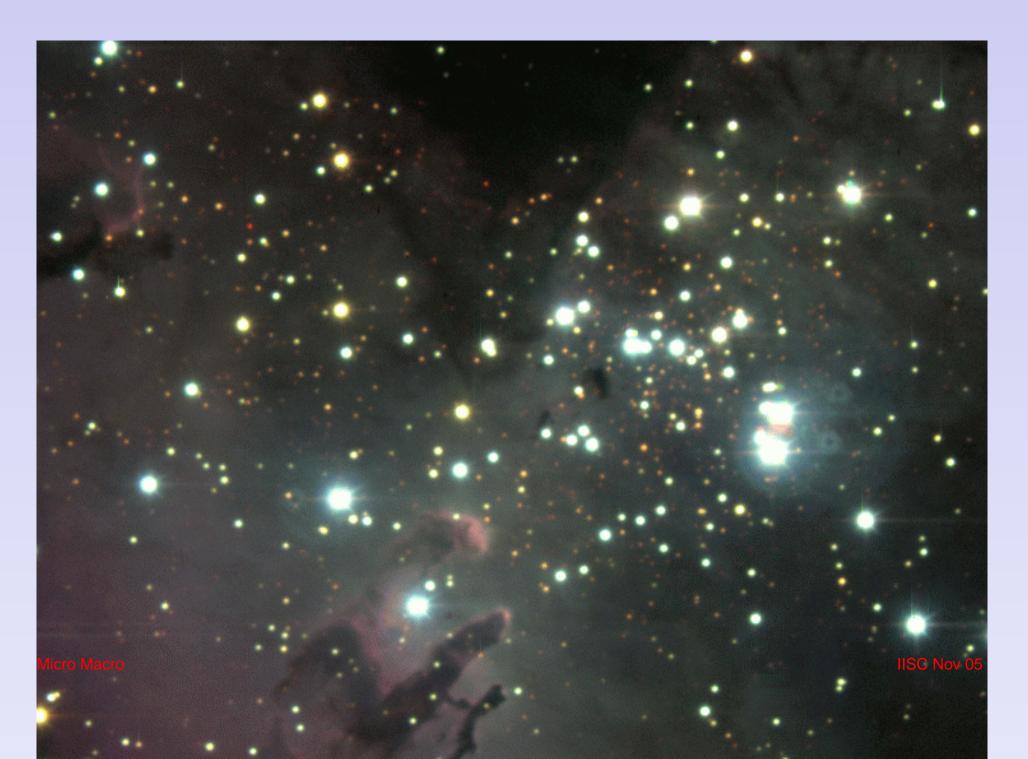
The fundamental force laws are the same for all these examples of matter and anti-matter.

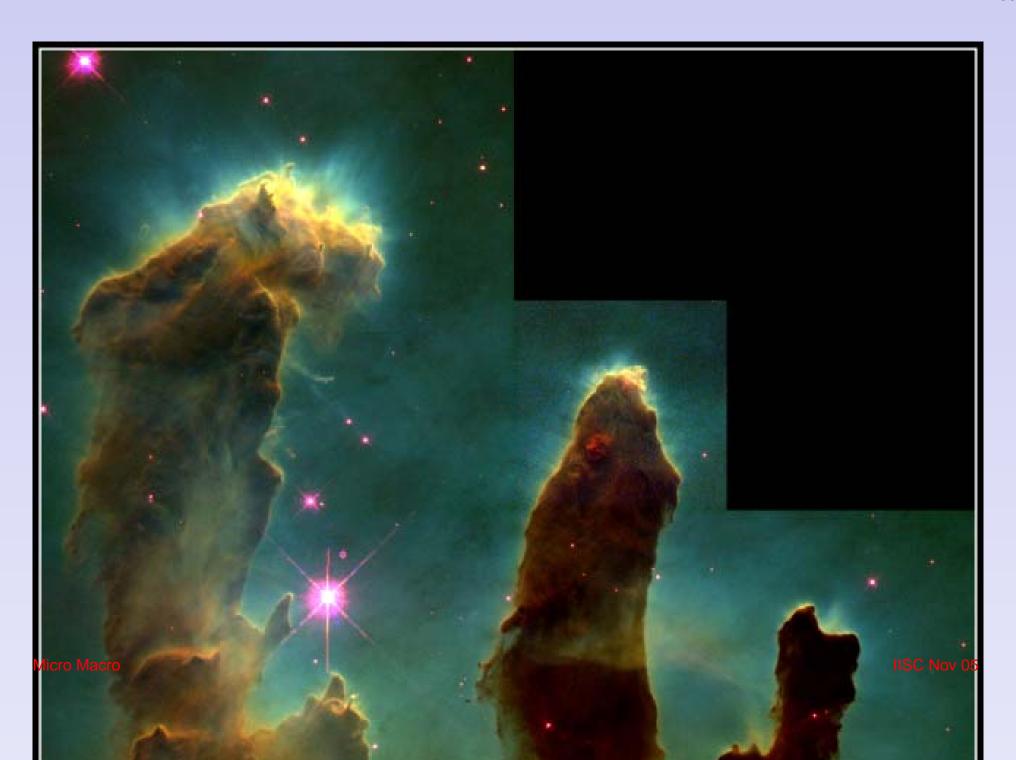
Where *is* all the anti-matter?

As far away as we can see, there is only Hydrogen in the Universe, no anti-hydrogen.

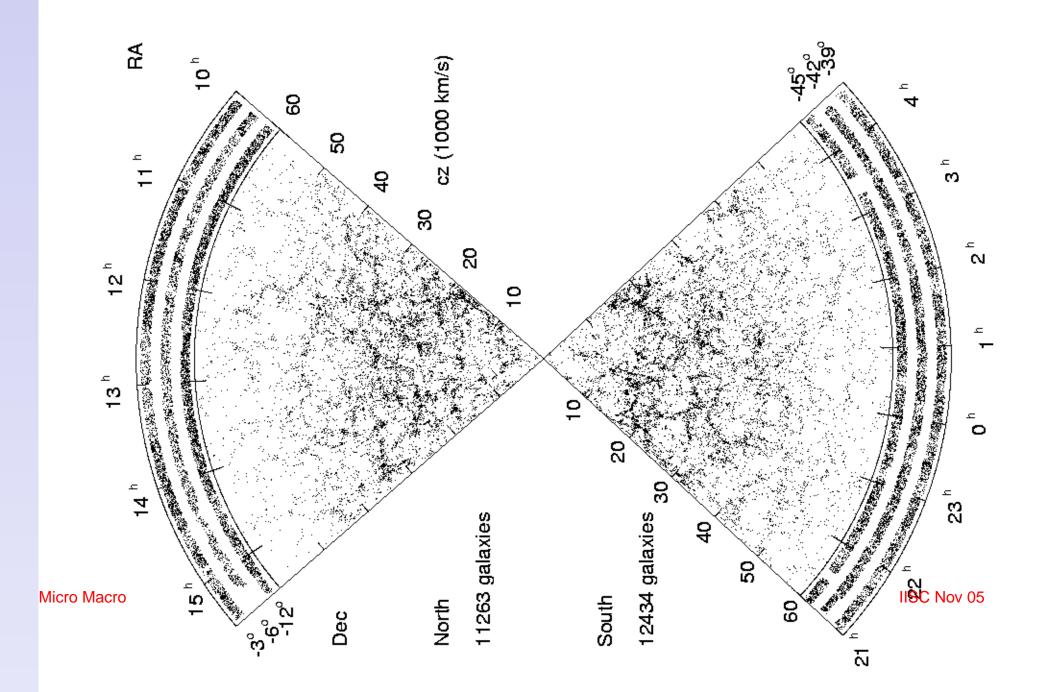
Any anti-protons or positrons violently annihilate to produce high energy radiation.

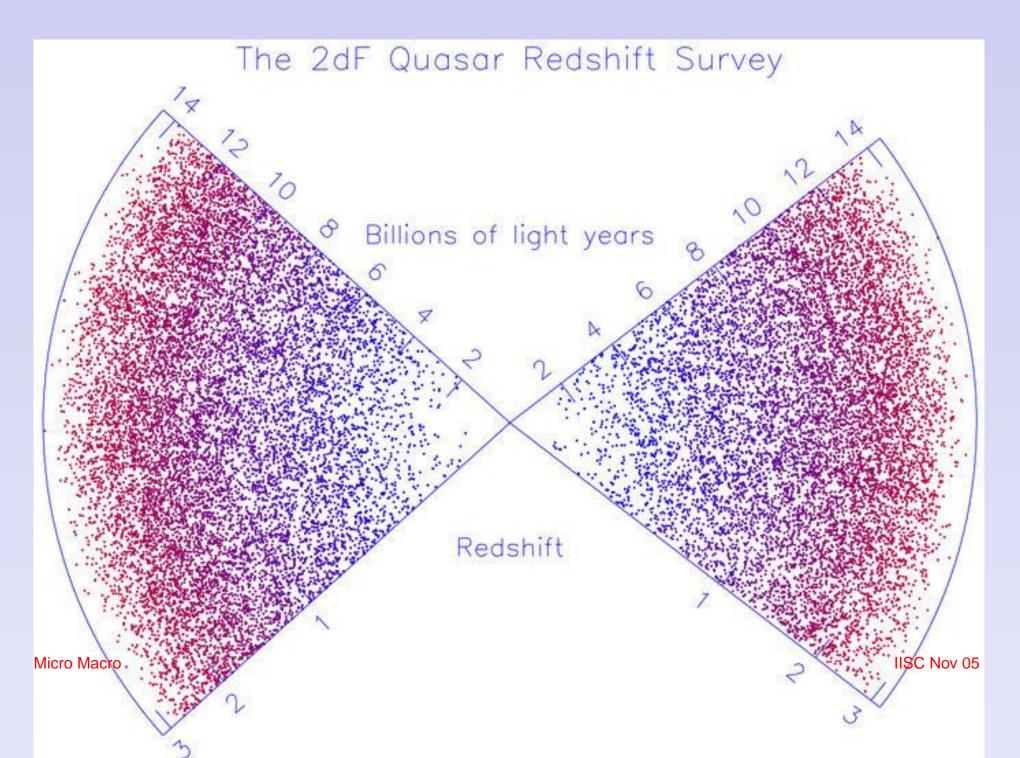
[Not all particle-anti-particle pairs will annihilate into photons. For this they need to be sensitive to the electromagnetic force. For examples neutrio-anti-neutrino pair can only annihilate directly only into Z^0 gauge bosons, not photons.]

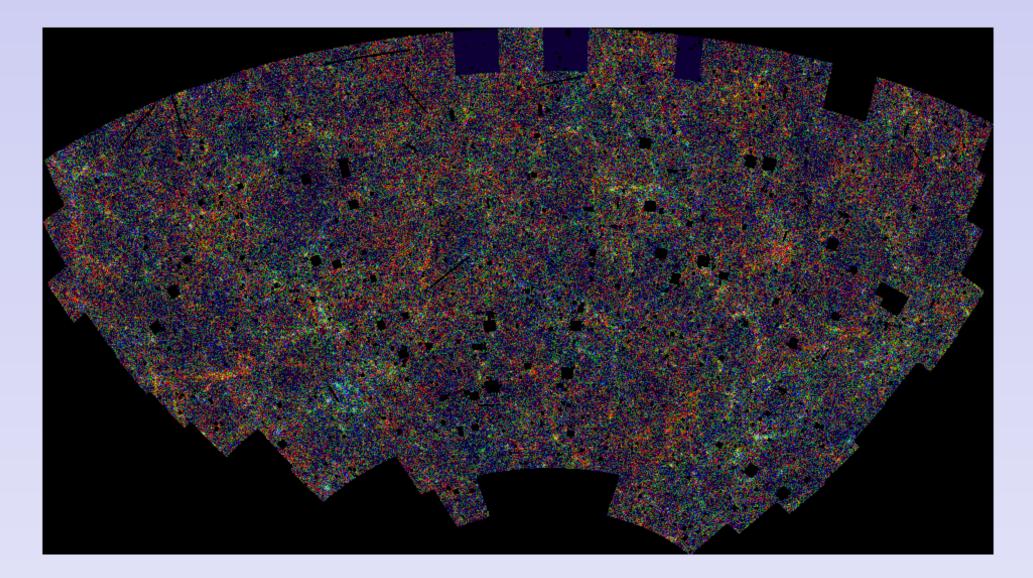

High energy anti-protons are found in cosmic rays reaching the


earth but these can be easily explained as products of violent astrophysical phenomena, not constituents of stable astrophysical objects.

The distribution of large hydrogenic clouds is almost continuous. There seem to be no major empty "corridors" separating matter universe and anti-matter universe.


Micro Macro


IISC Nov 05



36

"Before there was *anything*, there was *nothing* right?"

"Before there was *anything*, there was *nothing* right?"

... then where did *everything* come from?" – courtesy B.C. cartoon

"Before there was *anything*, there was *nothing* right?"

... then where did *everything* come from?" – courtesy B.C. cartoon

Paraphrased in Physics, if all the laws are symmetric then how did asymmetry arise?

"Before there was *anything*, there was *nothing* right?"

... then where did *everything* come from?" – courtesy B.C. cartoon

Paraphrased in Physics, if all the laws are symmetric then how did asymmetry arise?

 Discovery of the Cosmic Microwave Background Radiation (1964)

 Discovery of the Cosmic Microwave Background Radiation (1964)
 Hubble law (1929) showed the Universe was expanding, residual radiation shows it started as a hot fireball

✓ Discovery of *CP* violation in *K* meson decay (1964)

 Discovery of the Cosmic Microwave Background Radiation (1964)
 Hubble law (1929) showed the Universe was expanding, residual radiation shows it started as a hot fireball

✓ Discovery of *CP* violation in *K* meson decay (1964)

It may be these that motivated Andrei Sakharov to come up with a specific model

1. Baryon number violation
$$\not \boxtimes$$

 $X \rightarrow 99 \qquad \Delta B_1 = 2/3$
 $\bar{q} \bar{c} \qquad \Delta B_2 = -1/3$

2. Charge conjugation violation $\not (X \rightarrow q q) \neq \mathcal{M}(\overline{X} \rightarrow \overline{q} \overline{q})$

Micro Macro

IISC Nov 05

3 CP violation
$$\mathcal{SP}$$

 $r_{i} = \frac{\Gamma_{i}(x \Rightarrow q \cdot q)}{\Gamma_{i} + \Gamma_{2}} \neq \frac{\overline{\Gamma_{i}}(\overline{x} \Rightarrow \overline{q} \cdot \overline{q})}{\overline{\Gamma_{i}} + \overline{\Gamma_{2}}} = \overline{r_{i}}$

4 Out of equilibrium conditions Reverse reactions become unfavorable

... out-of-equilibrium conditions to be provided by the cosmic fireball

Violate baryon number ??

It is a time honored conserved quantity.

Violate baryon number ??

It is a time honored conserved quantity.

All of Chemistry depends upon it

Violate baryon number ??

It is a time honored conserved quantity.

All of Chemistry depends upon it

But we know there are nuclear processes which can transmute elements into one another

- Violate baryon number ??
- It is a time honored conserved quantity.
- All of Chemistry depends upon it
- But we know there are nuclear processes which can transmute elements into one another
- But still, the total number neutron + proton is always conserved in all radiactive decays

- Violate baryon number ??
- It is a time honored conserved quantity.
- All of Chemistry depends upon it
- But we know there are nuclear processes which can transmute elements into one another
- But still, the total number neutron + proton is always conserved in all radiactive decays
- and in all high energy accelerator experiments.

- Violate baryon number ??
- It is a time honored conserved quantity.
- All of Chemistry depends upon it
- But we know there are nuclear processes which can transmute elements into one another
- But still, the total number neutron + proton is always conserved in all radiactive decays
- and in all high energy accelerator experiments.

Example of another such number, not so time honored, is Lepton number.

Classic reaction is neutron decay

$$n \to p \, e^- \, \bar{\nu_e}$$

Many experiments suggest that the neutrino escaping in this decay has to be anti-electron neutrino, thus keeping Lepton number L zero on both sides of equation; Baryon number B is unity on both sides.

In accelerator experiments, even individual Lepton numbers L_e , L_μ and L_τ are conserved.

Three possibilities

HighEnergy solution : Baryon number indeed violated, but at such a slow rate that it has not been seen

Three possibilities

HighEnergy solution : Baryon number indeed violated, but at such a slow rate that it has not been seen . Slow rate means high energy reaction or, extremely heavy intermediary.

Three possibilities

HighEnergy solution : Baryon number indeed violated, but at such a slow rate that it has not been seen . Slow rate means high energy reaction or, extremely heavy intermediary.

LowEnergy solution : This is low compared to high !!! It means at the energies of 100proton massess. This is the scale of Weak nuclear force.

MediumEnergy solution : Moderately heavy neutrinos can

Micro Macro

46

IISC Nov 05

violate Lepton number, which later later produces Baryon number by Low Energy method.

Hopes of the High Energy solution

Wait and watch for proton decay.

Hopes of the High Energy solution

Wait and watch for proton decay.

Kamiokande experiment in Japan, Kolar Gold Field experiment in India.

Japanese experiment (now supecded by super-Kamiokande) filled thousands of tons of distilled water in a large underground tank, and waited for a proton to decay.

Hopes of the High Energy solution

Wait and watch for proton decay.

Kamiokande experiment in Japan, Kolar Gold Field experiment in India.

Japanese experiment (now supecded by super-Kamiokande) filled thousands of tons of distilled water in a large underground tank, and waited for a proton to decay.

The idea is that the decaying proton produces a high energy electron.

Hopes of the High Energy solution

- Wait and watch for proton decay.
- Kamiokande experiment in Japan, Kolar Gold Field experiment in India.
- Japanese experiment (now supecded by super-Kamiokande) filled thousands of tons of distilled water in a large underground tank, and waited for a proton to decay.
- The idea is that the decaying proton produces a high energy electron.
- The speed of the electron is more than speed of light in water

Hopes of the High Energy solution

Wait and watch for proton decay.

Kamiokande experiment in Japan, Kolar Gold Field experiment in India.

Japanese experiment (now supecded by super-Kamiokande) filled thousands of tons of distilled water in a large underground tank, and waited for a proton to decay.

The idea is that the decaying proton produces a high energy electron.

The speed of the electron is more than speed of light in water

This produces Cerenkov radiation which can be detected by numerous phototubes mounted in the walls of the tank.

This produces Cerenkov radiation which can be detected by numerous phototubes mounted in the walls of the tank.

However, protons don't seem to decay, not even a few events per year. Current lifetime of the proton is $\approx 10^{32}$ year. [$10^9 \times 6 \times 10^{23}$].

[Note, the age of the Universe is about 14 billion years so we could be sure not a single low energy dcay occure in its entire history. However the intended *B* violating interactions would be much more rapid at very high energies 10^{14} GeV].

 10^{-32} yr.⁻¹ rate is much too small compared to several favourite models of gauge unification.

[Can't they just build a bigger water tank? :-)]

This produces Cerenkov radiation which can be detected by numerous phototubes mounted in the walls of the tank.

However, protons don't seem to decay, not even a few events per year. Current lifetime of the proton is $\approx 10^{32}$ year. [$10^9 \times 6 \times 10^{23}$].

[Note, the age of the Universe is about 14 billion years so we could be sure not a single low energy dcay occure in its entire history. However the intended *B* violating interactions would be much more rapid at very high energies 10^{14} GeV].

 10^{-32} yr.⁻¹ rate is much too small compared to several favourite models of gauge unification.

[Can't they just build a bigger water tank? :-)]

In the meantime, even the paradigm of unification is undergoing radical changes ...

In the meantime, even the paradigm of unification is undergoing radical changes ...

Summary : The High Energy solution to *Basymmetry* problem, even if correct seems difficult to verify.

Here Low Energy =Electroweak scale; ≈ 100 GeV [Recall low energy Weak coupling constant $G_F \approx 10^{-5}/m_p^2$] Rather peculiar things happen in the Standard Model at 100GeV

- Here Low Energy = Electroweak scale; ≈ 100 GeV
- [Recall low energy Weak coupling constant $G_F \approx 10^{-5}/m_p^2$]
- Rather peculiar things happen in the Standard Model at 100GeV
- The vacuum structure melts down (phase transition); the interaction becomes long range, like electromagnetism with three photons.

- Here Low Energy = Electroweak scale; ≈ 100 GeV
- [Recall low energy Weak coupling constant $G_F \approx 10^{-5}/m_p^2$]

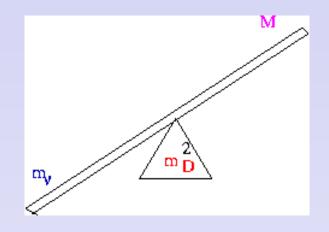
Rather peculiar things happen in the Standard Model at 100GeV

- The vacuum structure melts down (phase transition); the interaction becomes long range, like electromagnetism with three photons.
- ✓ The combined number B + L no longer conserved; ie freely violated.

- Here Low Energy = Electroweak scale; ≈ 100 GeV
- [Recall low energy Weak coupling constant $G_F \approx 10^{-5}/m_p^2$]
- Rather peculiar things happen in the Standard Model at 100GeV
- The vacuum structure melts down (phase transition); the interaction becomes long range, like electromagnetism with three photons.
- ✓ The combined number B + L no longer conserved; ie freely violated.

These conditions begin to look promising for obtaining *B*-asymmetry. But ...

These conditions begin to look promising for obtaining *B*-asymmetry. But ...


X A first order phase transition, the generic source of out-of-equilibrium conditions looks impossible with new limits on Higgs mass These conditions begin to look promising for obtaining *B*-asymmetry. But ...

- X A first order phase transition, the generic source of out-of-equilibrium conditions looks impossible with new limits on Higgs mass
- X Not sufficient *CP* violation in Standard Model.

Of course, many alternatives exist, all quite conclusive according to their authors, but none uniquely distinguished.

Medium Energy solution

With the knowledge as of 1998 of tiny masses 10^{-1} - 10^{-2} eV of neutrinos we have strong suspicion that there are lost brothers living at medium to high energies.

Quantum Field Theory permits such a possibility.

The light neutrinos will be approximately conserved in number.

The light neutrinos will be approximately conserved in number.

The heavy ones which appear in the early Universe will freely decay, violating Lepton number

The light neutrinos will be approximately conserved in number.

The heavy ones which appear in the early Universe will freely decay, violating Lepton number

We thus put together Medium Energy and Low energy possibilites together.

The light neutrinos will be approximately conserved in number.

The heavy ones which appear in the early Universe will freely decay, violating Lepton number

We thus put together Medium Energy and Low energy possibilites together.

Let the medium energy solution produce *L* asymmetry.

The light neutrinos will be approximately conserved in number.

The heavy ones which appear in the early Universe will freely decay, violating Lepton number

We thus put together Medium Energy and Low energy possibilites together.

Let the medium energy solution produce *L* asymmetry.

Then Low Energy B + L violation will convert it to B asymmetry.

The light neutrinos will be approximately conserved in number.

The heavy ones which appear in the early Universe will freely decay, violating Lepton number

We thus put together Medium Energy and Low energy possibilites together.

Let the medium energy solution produce *L* asymmetry.

Then Low Energy B + L violation will convert it to B asymmetry.

Recently we showed that the medium energy scale need be no higher than a TeV.

Recently we showed that the medium energy scale need be no higher than a TeV.

Overall this route via Leptogenesis is now most favoured, assuming see-saw is the exlplanation for the ultra-light neutrino masses.

Conclusion

 For every puzzle in Cosmology, a possible solution lies in microphysics!!

Conclusion

- For every puzzle in Cosmology, a possible solution lies in microphysics!!
- Dark Matter will have to be found from micorphysics and may in fact be hint to new Physics

Conclusion

- For every puzzle in Cosmology, a possible solution lies in microphysics!!
- Dark Matter will have to be found from micorphysics and may in fact be hint to new Physics
- If we have not misunderstood the matter-anti-matter asymmetry puzzle, its solution alsolies in microphysics; again can point to possible unification schemes.