The What and Why of	Title Page
Superstrings	Contents
U. A. Yajnik	
Quick overview	David of did
Universality	Page 1 of 14
Unification	Go Back
Fundamental particles - pieces of the puzzle	Full Screen
String physics : All of the above	Close
	Quit

Empirical laws

• Spring constants, elastic and viscous moduli

Universal laws

• Newton's law of Gravitation \rightarrow G_N

• Coulomb's law $\rightarrow \qquad \frac{1}{4\pi\epsilon}$

Universality = One coupling constant for divers situations

Unification of forces

Newton's universal Gravity \longrightarrow unification across distance scales

- Unified fall of the apple with motion of "heavenly" bodies.
- Determined terrestrial g in terms of G_N .

Maxwell's equations \longrightarrow unification of Electricity and Magnetism

- $c^2 = \mu_0 \epsilon_0$ a universal constant independent of E-M.
- Understanding of light as electromagnetic waves

Universality and symmetry principles

Newton's/Coulomb's law \longrightarrow Conservation of flux

Force $\propto (1/r^2)$, Surface area of sphere $\propto r^2$

Maxwell's equations \longrightarrow dynamical conservation of flux

Conserved flux \leftrightarrow conserved charges as sources

Charge quantization <i>i.e.</i> , Fundamental particles	Home Page Title Page
Charge values	Contents
strong, weak, weak hypercharge and EM	∢∢ >>
g_{st} g_{wk} g_Y $g_{EM} = g_{wk} + g_Y$	
<i>u</i> up quark 1 $1/2$ $1/6$ $2/3$	Page 7 of 14
d down quark $1 - \frac{1}{2} \frac{1}{6} - \frac{1}{3}$	Go Back
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Full Screen
Pattern repeats for 3 "generations"	Close
Not fully understood at present	Quit

All of this well packaged into ...

The particle picture

Feynman spacetime picture

Building blocks of scattering

"What about Gravity?"

... Abdus Salam

An ultra-universal theory

 $\frac{G_N M m}{m^2} = m a$

Effect of gravity purely geometrical

 $m_{Grav} = m_{inertial}$ "Principle of Equivalence"

Dynamics of Gravity determined by the geometric principle

 $\frac{1}{16\pi G_N} \int_{space-time \ domain} (\text{Riemann curvature}) = \text{extremum}$

Gravity field \equiv space-time geometry

Peculiarities of Gravity

- No known "charge quantization".
- Gravity field itself difficult to quantize
 - The particle picture (recall Feynman diagram) applied to Gravity results in an indeterminate Quantum Theory.
- Fundamental scale of gravity far different from that of the other interactions.

 $G_N \sim (10^{19} GeV)^{-2} \quad G_{wk} \sim (2 \times 10^2 GeV)^{-2}$

Biggest hinder to unification

Home Page
Title Page
Contents
< →
• •
Page 10 of 14
Go Back
Full Screen
Close
Quit

Uniqueness of Strings

- Quantum consistency only for
 - only for 26 space-time dimensions for bosonic String or 10 dimensions for Supersymmetric (boson-fermion symmetric) string
 - only for certain gauge symmetry groups for the particle interactions
- Quantum theory well behaved
- Only known way to unify all fundamental forces including Gravity

Home Page
Title Page
Contents
•• ••
• •
Page 13 of 14
Go Back
Full Screen
Close
Quit
Page 13 of 14 Go Back Full Screen Close Quit

Successes and potential

- Black Hole physics involves strong Gravity. It can be consistently understood.
- Big Bang is another strong Gravity phenomenon. All cosmological puzzles can be addressed within this framework.
- Space-time are dynamically generated. Dimensionality is selected.
- Number of fermion generations has fundamental explanation

Much progress : Economy and elegance of concepts Nature the final judge

Home Page
Title Page
Contents
44 PP
Page 14 of 14
Go Back
Full Screen
Close
0
Quit