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DEDICATION 

This paper is dedicated to the memory of Amos de-Shalit, with deep 
sadness at the loss, not only of a very distinguished and important scientific 
colleague, but also of a very close personal friend whose gentleness was 
matched only by his wisdom. In his tragically brief life he persistently strove 
to bridge the growing gulfs between different scientific disciplines as also 
between different cultures and nations. Of special physical interest to him 
was the unity of concepts in nuclear and particle physics, an example of 
which is presented here in the form of the impulse approximation. 

S.D.D. 

We discuss Feynman’s parton model for deep inelastic weak or electromagnetic 
processes as an application of the impulse approximation to elementary particle inter- 
actions. The special features and conditions permitting this application are elaborated 
upon in some detail including the dependence of the parton model and the impulse 
treatment on an appropriate choice of coordinate frames and the role of the very soft 
or “wee” partons. Application of the parton model is made to the calculation of the 
cross section for massive lepton pair production in very high energy hadron-hadron 
collisions and compared with experiment. The conjectured role of light cone singularities 
in describing this and the other deep inelastic amplitudes is also discussed. 

I. PARTONS AND THE IMPULSE APPROXIMATION 

We discuss Feynman’s parton model [l] for deep inelastic weak or electro- 
magnetic processes as an application of the impulse approximation to elementary 
particle interactions. The special features and conditions permitting this application 
of the impulse approximation, whose roots lie in the nonrelativistic domain of 
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atomic and nuclear bound states, to particle physics are elaborated upon in some 
detail. In particular we investigate by specific calculation the dependence of the 
parton model and the impulse treatment on an appropriate choice of coordinate 
frames and the role of the very soft or “wee” partons. We also present a more 
complete discussion of the application of the parton model to the calculation of the 
cross section for massive lepton pair production in very high energy hadron-hadron 
collisions [2]. The conjectured role of light cone singularities in describing this and 
the other deep inelastic amplitudes is also discussed and criticized. 

In order to apply the impulse approximation we demand the following [1,3]. We 
analyze the bound system-be it a nucleon or nucleus-in terms of its constituents, 
called “partons.” Nucleons are the “partons” of the nucleus, and the “partons” of 
a nucleon itself are still to be deciphered though we may wish to call them quarks 
in that (a) they have a heuristic value in serving as additive constituents in appro- 
priate reference frames, and (b) their existence has not been confirmed definitively 
by direct observation. If we specify the kinematics so that the partons can be 
treated as instantaneously free during the duration of a sudden pulse carrying a 
large energy transfer from the projectile or from some external current, then we can 
neglect their binding effects during the interaction and we can treat the kinematics 
of the collision as between two free particles, a projectile and the parton. With these 
conditions the impulse approximation applies. 

There is a big difference between the kinematical regime that fulfills the condi- 
tions for applying the impulse approximation to protons from those for applying 
it to nuclei or atoms. This is because the latter, in contrast to a nucleon itself, are 
structures made up of weakly bound and well identified individual nucleons or 
electrons. Thus the ratio of binding energies to rest energies for the constituents are 
typically 

for an atom 

for a nucleus 

for a proton 

few eV 
0.51 MeV 

N 10-5 < 1, 

8 MeV 
938 MeV 

- 10-2 < I, 

100’s of MeV - 1 
100’s of MeV ’ 

The Bjorken [4] deep inelastic limiting region satisfies the condition for applying 
an impulse approximation [l] to the electron scattering from protons as viewed 
from a certain class of P --+ co, or infinite momentum frames. The “partons” 
constituting a proton are strongly bound together as viewed in the rest frame. 
However if their bound state can be formed by momentum components that are 
limited in magnitude below some fixed maximum-i.e., if there exists a finite 
kmax--then as viewed in an infinite momentum frame the partons will each share 
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a finite fraction 0 < xi -C 1 of the infinite momentum P along the three-axis. These 
parton states are long lived by virtue of the time dilation as characterized by 

1 

where ki, , A4i , and xi are, respectively, the transverse momentum, rest mass, and 
fraction of P carried by each parton: xi xi = 1. The derivation of this intuitively 
appealing picture from a canonical quantum field theory [5] modified by imposing 
a maximum constraint on k, , and its applicability to a particular class of ampli- 
tudes, has been discussed. Equation (1) exhibits the increase in lifetime by the 
relativistic factor P/Meff of a virtual state of mass Men formed with lifetime 
l/AE - l/Men as viewed in a rest frame. 

For finite values of the fractional longitudinal momenta Xi this lifetime 7iir8 is 
long compared with the duration of the pulse, Tint , from the inelastically scattered 
electron in the deep inelastic region. In the electron-proton collision center-of-mass 
system the latter is given by 

and hence we see that Tint < rufe provided 

2Mv-Qz=2My(1 --+4zff. (3) 

For this condition to be satisfied we need in (1) both a bound on kt,,, and a 
restriction preventing x from approaching within P/Q” or M/v of its end point 
values. The requirement to satisfy this latter condition is that we work in the 
Bjorken limiting region of kinematics for this process where 2Mv, Q2 > M2 and 
the ratio of the large energy and momentum transfers, w, is finite. Then the fraction 
x of longitudinal momentum on the parton from which the electron scatters is 
also finite and restricted from its end point values since, as first shown by Feynman 
[l], it is given by x = (l/w). Moreover in this kinematic regime the interaction 
with the long-lived parton, which is essentially free by (3), conserves energy as well 
as momentum across the interaction vertex with the electron in Fig. 1. We have 
thus satisfied the conditions for applying an impulse approximation. 
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FIG. 1. Inelastic electron-proton scattering viewed in the P + co frame. 

If we want to find other processes which satisfy the same kinematical constraints 
and allow application of the impulse picture of “partons” in an infinite momentum 
frame we need look for interactions at high energies s which absorb or produce a 
lepton system of huge mass Q2 such that the ratio Q2/s is finite. We confine our 
attention here to massive lepton systems which can be safely treated by perturba- 
tion theory in the electromagnetic or weak couplings although, by further extending 
the assumptions for the theoretical framework, massive hadron systems could be 
included in the same kinematical framework just as well. Beyond the deep inelastic 
neutrino processes and electron-positron annihilation cross sections: v + p + e + a*., 
and e + e- + hadron + *.a which have already been discussed and analyzed [5] 
an additional observable cross section that meets the conditions for applying an 
impulse analysis [2] is 

P fP-tcJq4 + ... (4) 

Preliminary measurements of this process have been reported [6]. 
The organization of this paper is as follows. A more detailed discussion of the 

kinematical conditions for processes in which the interaction can be described 
using the impulse approximation in terms of hard partons in contrast to those in 
which the wee partons are predominant is presented in Section II. In Section III we 
analyze the dependence of our parton model picture on the appropriate choice of 
infinite momentum (P --f co) coordinate frames. Section IV is devoted to showing 
that general scaling predictions of the parton model, or the impulse approximation, 
are not altered by the wee partons. In Section V we study the cross section (4) for 
massive lepton pair production by hadrons at high energy deriving its scaling 
properties and the parton model for finite Q2/s. Finally in Section VI we analyze 
briefly the significance of the behavior of the product of current operators near the 
light cone for the deep inelastic processes we have studied with the parton model. 
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II. WEE VERSUS HARD PARTONS 

In contrast to processes such as (4) which meet the requirements for the impulse 
approximation and can be described in terms of partons, let us turn next to the 
conjectured role of the parton model in describing the predominant hadron-hadron 
interactions. These processes include pp and rrp elastic, resonance excitation, or 
total “inclusive” cross sections, and may best be viewed in the collision center-of- 
mass system. Then we can picture two colliding hadrons with very high momenta 
P, such that s = 4P2, one moving to the right and one to the left. How do they 
interact ? What is exchanged between the two lines in Fig. 2 ? It is not the “hard 
partons” which share a finite fraction of the individual nucleons’ P and therefore 
retain their sense of heading to the right or the left respectively. In order to insert 
a right moving hard parton into a left running proton state one pays a penalty of 
a factor l/s as computed directly from energy denominators such as in (1). This is 
the price to introduce a relative momentum of magnitude 2P into the wavefunction 
of a ground state built predominantly from finite momentum components which 
we take to be our working hypothesis. Rather it is the “soft” or “wee” partons of 
Feynman that bear only a finite momentum-or a “wee” fraction of P-and are 
equally at home on the right as on the left moving line that are exchanged [I]. In 
contrast to the hard partons responsible for the scaling in the deep inelastic 
processes and whose momentum distribution is measured in those experiments, it 
is the wee partons that determine the hadron-hadron cross sections. As described 
by Feynman, “wee” means that the partons carry less than or up to typically 
1 GeV momentum or a fraction x - 1 GeV/P of the proton momentum. In that a 
mass -1 GeV is introduced, scale invariance no longer applies to this analysis; and 
this is as it must be if total hadronic cross sections approach constant values (to 
within logarithmic factors) as their high energy limiting behavior, so that 
*tot N M-2. If scaling remained valid the only dimension would be utot - (l/s) + 0 
ass-co. 

Feynman [l] has postulated a specific spectrum for the soft or “wee” parton 
distribution. His argument is that since these “wee” partons with x - (1 GeV/v%) 
are responsible for the hadronic cross sections, their momentum spectrum must be 

A 

FIG. 2. Hadron-hadron interaction in the center-of-mass system at high energy via “wee” 
parton exchange. 
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consistent with the observed (to within logarithmic factors) constant total cross 
sections at very high energies. Thus if the amplitude to emit or absorb a “wee” 
parton in a momentum interval dx about x is given by (dx/xe) we find the total 
hadronic cross section can be expressed by 

s C/E, dx 2 utot - $1 I/‘/” +I” - (Ea&b)2(oL-1) - ~~(~-l), 
and therefore 01 = 1. However it should be recognized that independent of the 
success or failure of this extrapolation into the wee region, the concept of partons 
for the deep inelastic scaling region in which the impulse approximation applies 
and each constituent contributes incoherently as shown in [S, Paper II] is to be 
judged on its own merits. Indeed its theoretical base is more firm. 

What we would like to emphasize next is that the situation is very different for 
hadron-hadron interactions when we are dealing with processes such as (4) in 
which massive systems are created. If the massive pair emerges by bremsstrahlung 
from one of the nucleon lines the interaction cannot proceed via “wee” exchanges 
only. This is kinematically impossible when we satisfy the constraints of energy- 
momentum conservation for the overall process. 

We can illustrate this in two different coordinate systems that emphasize different 
aspects of the problem. To prove this consider first the kinematics in the collision 
center-of-mass system with the momentum labels of Fig. 3 which show two 
incident hadrons scattering to produce two final hadronic systems plus a pair of very 
large mass Q2. Since the masses as well as the transverse momenta of the hadronic 
systems (A) and (B) are negligible relative to the energy of each colliding nucleon, 
4 &, and to the lepton pair mass d/ez - -\/i, we can neglect them for simplicity, 
writing the statement of energy conservation as 

z/i = x2 ; + qL2 + Q2 + (1 - x - x’) ; & + (1 - x’) ; l/s (5) 

as shown in Fig. 3. x < 1 is the fraction of the right moving momentum 
transferred to a massive pair it produces (by bremsstrahlung) and we make no 
assumption on its magnitude; x’ is the fraction of Q l/s transferred by the left 
moving hadron. Solving (5) for the transferred momentum we find 

1 x’ Yzz - 
2 

x2 + 4 qL2 + Q2 Lx. 
s 1 

For finite Q2/s, x’ is a finite fraction according to (6); thus the exchanged momentum 
is given by x’P - &. This then d oes not describe interchange of only “wee” 
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or very soft partons between the nucleons, but rather of hard ones with a finite 
fraction of P. 

(A) (I-X-X I P+klq,, 

-(I-X’) P-k1 (B) 

FIG. 3. Kinematics for massive lepton pair production by bremsstrahlung from on of the 
nucleon lines. 

In contrast if we consider ordinary hadron cross sections with only finite mass 
particles appearing in the final state and with limited transverse momenta so that 
in (6) [qL2 + Q2] is replaced by a finite mass M$, , we have 

for 1 > x > ikfefr/A; UN 

for x 5 Mm/z/S (7’9 

The significance of (7) is this: for inelastic hadron processes leading to soft final 
particles, viz., processes including “pionization” so that final particles are pro- 
duced with limited, finite energies in the center-of-mass frame; i.e., with energies, 
x fi w Mefr (7b) applies. Then the interaction can take place with wee parton 
exchange, i.e., with a momentum exchange in Fig. 2 between the hadron lines of 
order x’ fi N Men as suggested by Feynman. 

This is in contrast with both elastic two-body high energy processes as well as 
with inelastic ones that exclude pionization, or a soft hadron component, in the 
center-of-mass system. In these cases, by (7a), the final x are finite and the 
exchanged momentum is characterized by x’ N M&/s so that the exchanged 
momentum is x’ &N M&/1/; i.e., it is “super wee.” Thus there are three 
distinct regions to consider in describing the high energy hadron interactions: 
those relying on hard partons (H), wee partons (W), and super-wee parton (SW). 
The hard partons enter processes involving an external line bearing a very large 
mass; wee partons are exchanged in ordinary hadron processes leading to pioniza- 
tion, or a soft component of final particles in the center-of-mass system; and super- 
wee ones enter elastic processes, or those from which a soft final component is 
excluded. 

In terms of “collision times” in the center-of-mass frame, hard parton exchange 
occurs during the vanishingly small interval -rH N l/xP N l/xG N I/V%; “wee” 
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exchanges leading to a constant high energy cross section occur during a finite 
interval 7-w - l/x 2/S N l/M,fr ; and a super wee one has an increasing interval 
of coherence 78w - I&/A& . 

In terms of an intuitive wavefunction picture of a hadron as a bound system 
one may characterize these regions as follows. The loosely bound constit- 
uents of the proton as viewed in the rest frame will generally acquire a finite 
fraction of the infinite momentum P in a Lorentz transformation, or boost, to an 
infinite momentum frame. These are the hard partons and their distribution can 
be analyzed in the impulse approximation and is probed by deep inelastic processes 
in the Bjorken region of finite w, or with finite Qz/s. One begins to probe into the 
wee region, characterized by very high momentum components in the rest frame, 
as one moves out to extreme values of w. Thus in the deep inelastic electron 
scattering cross section, for w > 1 the electron scatters from a soft-to-wee parton 
with a fraction x = l/w < 1 of the proton’s longitudinal momentum. Also as we 
approach the threshold w - 1 the scattering is from a parton with all but a fraction 
(1 - l/w) of the momentum and as this fraction decreases into the wee region the 
probability of such partons existing is also being probed [7]. As one enters into the 
wee region the conditions for Bjorken scaling are violated and a scale length such 
as a mass M or transverse momentum cutoff kLm,, enters the problem. Finally for 
elastic processes, as well as inelastic events excluding a soft final component, we 
have the super wee region. By unitarity, or simply the optical theorem, the elastic 
and inelastic amplitudes are coupled nonlinearly. This tells us that what we have 
called the “super wee” region is necessarily related to the “wee” one that plays the 
major role in inelastic hadronic processes. This connection is illustrated in Fig. 4 
which shows that one or more closed loops of wee exchanges can after cancellation 
of the momenta carried by the individual partons lead to a net transfer of super- 
wee momentum. Thus all super-wee effects may be no more than a reflection of 

i 
q1 1 1 q2 

q,+q,=q 

. / t q,,q,:wee; q:superwee 

FIG. 4. Example of a super wee exchange as a result of super position of two wee exchanges. 

multiple wee exchanges. However we cannot say the same for a relation between 
hard and wee partons. The wee parton effects cannot be mocked up by a multiple 
exchange of hard partons as we now show. For this, it is more convenient to use a 
true infinite momentum system, i.e., one with P + co, and with large but fixed s 
and Qz. Let us therefore boost ourselves into such a frame. 

We define our infinite momentum frame by Lorentz transformation to a moving 
coordinate frame with velocity /3 down along the vertical axis in Fig. 2. The 
resulting kinematics are shown in Fig. 5. Dropping finite masses in the high energy 
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limit, s/M2 > 1, we can write for the energy-momentum four vectors of the two 
incident hadrons 

PI : (P + &, 0, P, ; A), 

P2 : (P + & , 0, P, - ; dis), 
(8) 

where 

or j3 M 1 - s/8P2. 

The final hadron in Fig. 3 with center-of-mass momentum components 
- f(1 - x’) z/s and -k, parallel and perpendicular, respectively, to the collision 
axis is boosted in this system to one with components that to leading order are 
(1 - x’) P and - i(l - x’) -\/s along the direction of the boost and transverse 
to it, respectively. Thus the momentum transfer from the nucleon line is 

P2 - P,’ = X’Pi,, - +xX’ l/s i, ) (9) 

where i,, and i, denote unit vectors parallel and perpendicular to the direction of 
the boost. 

0 A 

k! 
A B 

1 P 

G ‘aJs 

FIG. 5. Hadron-hadron interaction viewed in a true infinite momentum frame with a large 
transverse momentum mismatch between the two initial hadrons. 

In terms of the parton model, (9) together with (6) and (7) reveal the following: 
For a hadron-hadron collision leading to production of a massive system with 
mass (2” from one of the lines, so that x’ is finite as in 6), there must be a very large 
transverse momentum transfer -V’S between the hadron lines. On the other hand 
this transverse momentum transfer can be limited to a finite value if wee (or super 
wee) partons are exchanged in ordinary hadron-hadron collisions as in (7) .Thus 
if we consider the parton models in an infinite momentum frame as described by 
(8) and with a finite bound on the transverse momentum components as implied, 
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or enforced, in the various models that have received detailed study and have 
provided a base for deriving the Bjorken scaling behavior [5], only the wee partons 
in the sense of (7a) or (7b) can be exchanged. These will provide the interaction 
mechanism for the predominant hadronic cross sections. However an exchange of 
a hard parton as required kinematically for the production of a massive pair state 
cannot occur under the assumption of a finite limit, kLma,, at the hadron vertices. 
Hard partons thus cannot by multiple exchanges simulate wee parton effects, 
either. 

Clearly then the process (4) will not be related to the total nucleon-nucleon cross 
sections and indeed cannot proceed by the illustrated mechanism in Fig. 3. In 
other words the massive pair is not produced by bremsstrahlung from one of the 
nucleon lines. The mechanism for creating the pair that meets all kinematic con- 
straints as well as the condition of limited finite momentum transfer is illustrated 
in Fig. 6: the pair is created via parton-antiparton annihilation. Viewed from the 
center-of-mass frame a hard parton moving to the right annihilates on a similar 
antiparton headed to the left (or vice versa) and the resulting system is very massive 
since the parton-antiparton energies add while their momenta subtract. From our 
infinite momentum frame the high energy parton-antiparton pair with parallel 
longitudinal momenta along P but with antiparallel transverse momenta annihilate 
at the bare electromagnetic vertex to form a pair of mass 

Q2 gg X1X$, (10) 

where x1 and x2 are the fractions of their respective proton momenta they are 
carrying. Equation (10) is a scalar and is most readily derived in the center-of-mass 
system: 

QZ = (G + Ed2 - (P, + P2j2, 

cs (x1 + x2)2 s/4 - (x1 - x2)2 s/4 = x1x2s. 

B 
Q2 q x,x,s 

FIG. 6. Production of a massive lepton pair by parton-antiparton annihilation. 
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FIG. 7. Example of a covariant Feynman diagram for producing a virtual photon as expressed 
in terms of a sum of time-ordered old-fashioned perturbation diagrams with both bremsstrahhmg 
and annihilation. 

In describing these graphs and amplitudes in this way we are of course not referring 
to Feynman graphs and amplitudes which combine the annihilation and brems- 
strahlung contributions together in covariant mixtures as illustrated in Fig. 7. Our 
infinite momentum graphs carry a direction of momentum as well as a direction of 
time as described in our earlier work [5]. 

In process (4) with finite Q2/.r, (10) shows that one is dealing with hard partons 
and with the same physical region of parton momenta as probed in the deep 
inelastic scattering experiments that measure the parton distribution in x = l/w. 
In Section V we present a detailed formal analysis of the theory of this process 
using the same techniques as presented earlier for the analysis of deep inelastic 
scattering and pair annihilation. In particular the impulse approximation will be 
shown to apply and with it the parton model. The discussion of this section was 
intended to provide the physical picture and intuitive understanding for this 
development as well as for its relation to other processes. 

The ability to construct an impulse approximation treatment for high energy 
processes with massive external pair states has been a useful step forward in our 
description and understanding of high energy processes. Tests of these ideas 
through these and other processes are very important to accomplish, as well as to 
keep clearly distinct from successes or failures in the wee or super wee regions 
which are not amenable to an impulse treatment. Indeed the wee regions require 
extrapolations from the hard parton region along with assumptions on the spec- 
trum of partons. Moreover in general they do not lead to scale invariant results 
since they contain a cutoff mass or transverse momentum as a parameter. 

III. CHOICE OF “INFINITE MOMENTUM" COORDINATE SYSTEMS 

Not all infinite momentum frames are suitable for developing a valid parton 
model picture [8]. The important point to be recognized is that “an infinite momen- 
tum frame” is not a Lorentz invariant concept. Neither is the decomposition of an 
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invariant Feynman amplitude into its separate scattering and pair creation and 
annihilation parts corresponding to the direction of time on an internal line. As a 
result, although the use of such infinite momentum frames is essential to the 
derivation of the parton picture, the specific physical picture does not hold in 
all of the infinite momentum frames of the nucleon. If the infinite momentum of 
the nucleon defines the three-axis, i.e., its four-momentum vector is specified by 

P” = (p + g ) 0, 0, P), 

we must satisfy the defining equations 

Mu= +q.P=(qO-qJP+gqO; - q2 = (43 + q”h3 - qO) + 4L2, 

which require 

q” - q3 = UlP, 

q” = VP, 

so that both Mu and q2 approach a limit independent of P as P --f co. Two of the 
simplest choices for u and v are 

(a) v = (2Mv + q2)/4P2, u = Mu; 

in this frame we have 

2Mv + q2 
q” = 4p 9 cl3 = - 

2Mv - q2 
4P ’ 

(b) u = 0, v = 2vIM; 

in this frame we have 

q=q32 
MP, 

-q2 = q12. Ulb) 

These two possibilities will be called frame (a) and frame (b), respectively. Frame 
(a) coincides with the CM system of the incident electron and the target nucleon 
for electron-proton scattering. These two frames represent the two extreme 
possibilities for the whole family of infinite momentum frames since in frame (a) 
both q” and q3 are very small, being of order l/P, while in frame (b) both q” and q3 
are large, being proportional to P. A variant of frame (a) is u = 2Mv/2P2, u = Mu, 
or q3 = 0. By assigning possible values to u and v one obtains the whole family of 
infinite momentum frames. 
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The physical picture of the same scattering process has a different appearance in 
different coordinate systems. To demonstrate this point clearly, we will give as an 
elementary, almost trivial, example the second-order calculation of the structure 
functions WI,, in a model of spinless nucleons interacting with spinless pions. This 
model, though unrealistic, is an ideal example for our purposes because it is super- 
renormalizable and has thereby the virtue that a Bjorken limit exists in perturbation 
theory without the need of imposing a high momentum cutoff. The interaction 
Lagrangian of the model is 

~(4 = G#+#+, w 

where #, rf, are the spinless proton and neutral pion fields, respectively. For 
simplicity we have omitted additional charge states or isospin families as they can 
be incorporated without difficulty. The electromagnetic current operator of the 
model is given by 

J,(x) = -i++(x) q&i,(x). (13) 

We shall now calculate by three different ways and in different coordinate 
frames the second-order contribution to the familiar structure functions WI,, in the 
Bjorken limit. First, these structure functions will be obtained by the frame 
independent covariant perturbation technique; and then they will be computed in 
the two infinite momentum frames (a) and (b). The structure functions WI,, are 
defined as 

W,, = 47r2 + j (dx) e+@(P / J,(x) J”(O) 1 P), 

= 4+ + c <p I J,(O) I n>(n I J”(O) I Pmd4 S4(q + p - PA 
12 

( 

(14) 
=- g,, - y, W1(q2, v) 

+ & (p” - $g qbc)(P, - y 4,) W2(q2, 4, 

or 

l wl = 2(1 - lyq2) [- (1 -$A..], 

w2 = 2(1 - G/q2)2 
l [- (l-$4+38], 

where 

A= W;, B = & Pu w,,,p. 

(1% 

(16) 



PARTONS AND THEIR APPLICATIONS 591 

The second-order contribution corresponds to the electroproduction of a single 
pion. This is represented by the three Feynman diagrams in Fig. 8. The covariant 
calculationfollows standard procedures. The gauge invarianttensor W,, correspond- 
ing to Fig. 8 is given by 

WU” = (2:)s & -- ~ s ;;; g$ syq + P - P, - k,) 1 (2Pu(;M;)$T qv) 

+ w, + q,w1, - d + W” + q”wlu - 4J 
(--2P * kl + p2w4v + q2) 

+ WI, - q,wl” - 4”) 
(-2P * k, + p2)2 I ’ 

(17) 

where P1 ,E1, M kl, wl, and p are the momenta, energies, and masses of the 
proton and the pion in the final state, respectively. 

(a) (bl (cl 

FIG. 8. Second-order Feynman diagrams for electroproduction of one pion. The crosses x 

indicate the electromagnetic vertex and the vertical dashed line - - - indicates that the final 
particles are on their mass shells. 

Straightforward calculation shows 

A = w,u = (2$ 2$ 
2 -~ 

I[ 
q2 + 4Mv + 4M2 + 

tq2 + 244d2 q2 + 2Mv 3 Ia 

+[ 

2(+4M” - 2p2 + 2Mv) 
q2 Jr 2Mv + 2-j 11 + t--q2 + 4M2) I+ 

B=&P’LW,,P~=&&.& 
I( 

+3Mv+q2+2M2 ZI 
q2 + 2Mv 1 0 

(18) 

+ 2(Mv + 2M2 - $)(+3Mv + 2M2 + q2) 
q2 + 2Mv 1, + (Mv + 2M2 - p2)2 Z2/, 

(19) 
where 

I, = s 
$$2 a4(P + q - Pl - k,) (20) 

1 
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Elementary integrations give 

10 = : - ; 4s - (M + /.L)“][s - (M - p)2]; 

-77 
I1= ~ 

4M dv2 - q2 

( (s - q2 + M2)(s - M2 + p2) - 2&J 

x In I + 24 d/(-q2 + v2)b - (M + p)21b - (M - pj21 1 
(s - q2 + M2)(s - M2 + p2) - 2p2s 

( - 2M d/(-q2 + v2m - (M + p)“l[s - (M - pj21 1 . 

; (21) 

Is = 27s l/b - (M + p)Ts - (M - /-ql 
[(s - q2 + M2)(s - M2 + r-l”> - 2p2s12 

- 4M2(-q2 + v2)[s - (M + P)~][s - (M - PL)~] I’ 
where 

s = (q + P)” = 2Mv + q2 + M2. (22) 

In the Bjorken limit (limn,) 2Mv - q2, -q2, Mv+ cc with x = (-q2/2Mv) < 1 
fixed, these integrals approach the limits 

(23) 

%- 
I, + - 

l-x 
4Mv M2(1 - x)” + p2x . 

By (15), (18), and (19) this leads to 

lig W, = 0 (+ In v), 

1iII VW, = & $ x2(1 - x) 
1 

M2(1 - x)” + p2x ’ 

(24) 

It is easy to verify that this leading order of Eq. (24) is entirely due to the con- 
tribution of the third term in (17) which is due to Fig. 8c. 

We now turn to the frame-dependent calculation of the same process. Here we 
apply the old-fashioned time-ordered perturbation theory. It is well known that a 
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covariant Feynman diagram decomposes into several time-ordered diagrams. For 
example, the Feynman diagram Fig. SC consists of four time-ordered diagrams as 
represented in Fig. 9. Since time ordering is not a Lorentz invariant concept, the 
value of each diagram in Fig. 9 is not invariant; only their sum is. 

According to the discussion above, only the four diagrams in Fig. 9 survive in 
the Bjorken limit. We shall therefore concentrate our attention on these four 
diagrams and neglect those obtained from Fig. 8a and 8b. Furthermore, WI 
vanishes in the Bjorken limit. Thus, only v W, will be computed in the following. 
Using the rules of old-fashioned perturbation theory we can verify that in frame (a) 
of Eq. (11) only the diagram of Fig. 9a gives a nonvanishing contribution to 
VW, in the Bjorken limit, and for this diagram we have 

(25) 

where we have used the notations indicated in the figure. Let’s adopt the param- 
eterization 

P,=yP+k,, kl = (1 - v) P - k, , 

P,’ = P, + q . 

Only when 0 < y < 1 is the integral nonvanishing and we find in the Bjorken limit 

q” + Ep - E,’ - w1 = ‘““4; q2 M2 \ 
+tp+TF1 

[ 
2Mv - q2 

- VP - 4p 
+ Cc. + kJ2 + M2 

2YP 1 
[ 

k12 + p2 
- (1 - Y> p + 2(1 _ y) p I 3 (27) 

2Mv q12 
ETjjy-- 2yP ’ 

= q” + El - E,‘; - 

i.e., energy as well as momentum becomes conserved across the elementary 
electromagnetic vertex. 

We can also reduce the energy denominator in (25) to 

2El(Ep - El - wJ = - i-1, FL2 + M2(1 - Y>” + p2yl (28) 

595/66/2-13 
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(a) (b) 

I I 

(c) (d)  

FIG. 9. Time-ordered diagrams corresponding to the single Feynman diagram of Fig. SC. 

Turning to the numerator factors we have for the large components (JL = 0,3) 

(PI + PI’), = 2Pu + 411 = 2YPu + CL 

and so leading order in frame (a) 

By identification of the coefficients of PUP” we obtain 

‘g VW2 = (2;)3 ; -- - s m dkL2 x2(1 - x) o [k,2 + M2(1 !- x)” + p2x12 ’ 

1 (29) 
x2(1 - x) M2(1 - x)” + p2x ’ 

which agrees with (24), as it should. 
We now repeat the calculation in frame (b). In this frame Fig. 9b and 9c do not 

contribute, as can be readily verified. However, both Fig. 9a and 9d contribute 
generally, i.e., there occur both scattering and pair production at the external 
current interaction. Their contributions are, respectively 

w(a) - G2 r - - !.I” (2?r)3 2M 
I 

;L; 2$’ Go + EP - 4’ - 4 
(PI + pl?, (PI + PI’L 
(2El)2 (Ep - El - ml)2 

w(d) = G2 1 (F - Pl?, @I - PI’)” -- WY s 
d3k, 1 F$qO + Ep - E,’ - ml) : 

(27~)~ 2M 2~4 2E, (2EJ2 6% + & - d2 
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Let us use the parameterization 

P,=yP+k,, 

P,’ = p, + q 

k, = (1 - y) P - k, , 
(318) 

for Fig. 9a and 

irl = y’P + kl’, k, = (1 + u’) P + kl’, 

PI’ = q - P, 
@lb) 

for Fig. 9d. In the Bjorken limit the energy conservation equation becomes 

q” + Ep - El’ - w1 = $p+(p+$) 

- rtki + 4 p + 2(2v,Az y) P 1 
[ kL2 + p2 1 

(32) 
- (1 - v>p + .&I _ v) p 9 

in terms of (31a) for Fig. 9a, and 

k;2 + p2 q0+E,--E,‘--w,&+42(1 -xl- 1 +v, 1, (33) 

in terms of (31 b) for Fig. 9d. For the energy denominators notice that 

~EI(J% - 4 - 4 

= - &, [k12 + M2(1 - y)” + p2yl, 

rz- 
M2(1 -  X> jk,2 + @A2 + P2j2 

k12 + p2 l W(1 - x)” (34) 

= - & [k12 + M2(1 - x)” + /2x], 

where we have made use of the solution to the a-function given by (32). Similarly, 
with the aid of (33) we have 

2E,(E, + E, - col) = & [k;2 + M2(1 - x)” + p2x]. (35) 
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For the large components (JA, u = 0,3) the tensor structure becomes 

wuv + - p,pv h2 ($g)’ ($J’ w2 

in frame (b). Collecting the results (32), (33), (34), (35), and (36) we obtain finally 

jy dk,2 ,: dy 6 [l - y - k,2 + p2 ] 
W(1 - x) 

X2(1 - X) 
’ [k2 + M2(1 - x)” + p2x12 

+&$j;dk;a j,“dy’6 [l +y’- k;2+P2 ] 
AP(1 - x) 

x2(1 - x) 
x [k;2 + M2(1 - x)” + p2x12 

(37) 

(2$3 5 s m dkL2 x2(1 - x) -- o [k12 + M2(1 - x)” + $x12 

x2(1 - x) 
1 

M2(1 - X)” + $x ’ 

which again agrees with (24), as it should. It is interesting to note that if p2/M2 > 1 
then (32) can never vanish and the scattering diagram (Fig. 9a) will not contribute 
in this frame (b). 

This elementary example of comparing the three methods of computing the 
same amplitude reveals the following. The first calculation does not tell whether 
scattering or photon dissociation is more important since the covariant perturba- 
tion method mixes together all possible time orderings in one diagram. In the 
infinite momentum frame of the proton in which the virtual photon has almost 
zero energy and longitudinal momentum, the calculation shows that only the 
scattering diagram contributes. Furthermore, in this frame energy as well as 
momentum is conserved across the bare electromagnetic vertex, i.e., the impulse 
approximation is valid. This leads to a simple physical picture that the proton 
fkt dissociates into its constituents following which an individual constituent is 
suddenly scattered by the very virtual photon. The ratio -q2/2Mv measures the 
longitudinal momentum of the constituent scattered by the photon. In fact this 
picture persists for higher order diagrams of increasing complexity [5]. This is the 
parton model picture. However, we emphasize that such a picture is valid only in 
special infinite momentum frames of the proton. The infinite momentum center- 
of-mass frame for deep inelastic electron scattering is one such frame. 

On the other hand, the physical picture is more complicated in a frame in which 
both q” and q9 are proportional to P(v/M) > P as in (1 lb). For the lowest order 
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diagrams, if p2/M2 < 1 both scattering and photon dissociation enter into play. 
If p2/M2 > 1, only photon dissociation need be cobsidered. It is disturbing that 
the mass ratios should enter the consideration in view of more complicated final 
states to be included. Furthermore, the impulse approximation fails and no simple 
interpretation can be given to the ratio -q2/2Mv. As higher order diagrams are 
considered one can expect to find that both scattering and photon dissociation 
will play important and ‘complicated roles in the deep inelastic electron proton 
scattering in this frame. 

The parton model picture is obtained only by a proper choice of the coordinate 
system so that the photon dissociation diagrams can be entirely eliminated-they 
are not ignored but simply they are unimportant-in the Bjorken limit. This is 
possible since the relative importance of individual time-ordered diagrams is frame 
dependent and as a result the parton model picture is not a relativistically invariant 
concept. The fact that the same physical process assumes different appearances in 
different coordinate systems, simple in some but complicated in others, is an 
important lesson to learn, particularly so in the description of hadron-hadron 
collisions as recently emphasized by Feynman [I], and Benecke, Chou, Yang and 
Yen [9]. 

IV. ROLE OF “WEE" PARTONS 

The formal derivation of the parton model from (14) for the structure functions 
in the Bjorken limit leads to the expression 

l&l w,, = 4772 g J (4 eiTUP I .LW MO I UP>, (38) 

where j,(x) = U(t) J,(x) U-l(t) is the undressed or bare current and 

U G U(0) = [exp (-i jr, H,(T) do)] 
t 

is the U-matrix propagating the asymptotic state of a single physical proton, 1 P), 
up to time t = 0. Equation (38) is valid in reference frames of type (a) of Eq. (11). 
To derive this result the essential step is the approximation of overall energy 
conservation by 

q” i- Ep - En = q” A- Eup - Em, (39) 

where Eup and E,, are, respectively, the energies of the components appearing in 
the expansions of 1 UP> and [ Un>; viz 

(40) 
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Equation (39) is an impulse approximation, since it replaces the overall energy 
conservation for the interaction by energy conservation across the bare electro- 
magnetic vertex. It is the necessary approximation for establishing scaling in the 
Bjorken limit. We have studied the validity of the approximation (39) and derived 
(38) in our earlier papers [5]. 

Here we analyze the role of the “wee” partons of Feynman [l] and in particular 
show that they do not affect the validity of the scaling arguments. In the infinite 
momentum frame (1 la) the direction along the initial nucleon with momentum P 
and the direction of the scattered constituent’s momentum XP + q define two 
distinct directions for all the particles involved, virtual and real, to follow. Generally 
a particle will have a momentum along the direction of XP + q if it is created by the 
scattered constituent; otherwise, it will have a momentum along the direction of P. 
These two groups of particles will be called (B) and (A), respectively, as illustrated 
in Fig. 10. . 

(B) 
‘\ 

(a) (b) 

FIG. 10. Diagrams illustrating pions and nucleons moving in well-separated and well-identified 
groups along the directions P and XP + q. 

A particle with a finite fraction of longitudinal momentum will belong either to 
group (A) or group (B) but not to both, since it has a clear sense of direction. Con- 
sequently it cannot be exchanged between the two groups which are separated by 
an asymptotically large transverse momentum q. However, a very special group of 
particles with momenta in an extremely small kinematic region do not have a well- 
defined sense of direction and therefore can be associated with both of the two 
groups (A) and (B) without introducing a large transverse momentum mismatch 
as we discussed in Section II. These are the “wee” partons which introduce inter- 
actions and interferences between particles in group (A) and those in group (B). 
They also give rise to the dominant contributions to high energy hadron-hadron 
interactions as we described earlier according to the Feynman theory [l]. The 
“wee” partons have momenta of the following form 

Pw=yP+k,, (41) 
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where 
Y4 -my k, d m’ 

and m and m’ are typical masses assumed no larger than = 1 GeV. P, is closely 
parallel to the direction of P in the infinite momentum frame. However (41) can 
also be rewritten as 

P, = f (xp + 4 + k, - $ (yq) (42) 

which is also parallel to xP + q, the direction of the scattered constituent, since 
k, - I/x (yq) is finite [lo] as a result of the restriction yq - m. Since their phase 
space diminishes to zero as q2 + co, it may be argued that these “wee” partons 
should not play any role in the Bjorken limit. Indeed this is the case order by order 
in the perturbation expansion for the quantum field theory model (the y5 theory 
with a k, cutoff of the hadronic interactions) studied in our earlier papers [5]. 

On the other hand, Feynman [l] argued that “wee” partons do play an essential 
role. As we described earlier they account for a nonvanishing total cross section in 
hadron-hadron collisions at very high energies and emerge as pionization products. 
Therefore we must understand their apparent absence from our field theory model 
as we applied it in the Bjorken limit for deriving scaling behavior and the parton 
model. The recent work of Chang and Yan [I l] offers an explanation and a basis 
for understanding here. They work with a 4” model for calculational ease, the 
point being that no cutoff is required in this superrenormalizable model to suppress 
the high momentum components. Chang and Yan show with this model that the 
wee region is promoted to its prominant and essential role if the leading contribu- 
tions to all orders in the perturbation expansion are summed up, order by order. 
Then if the coupling is sufficiently strong the individual contributions, though small 
and vanishing as s + co, add up to give the dominant contribution to the limiting 
behavior. The series obtained in this work sums to 

We interpret this result to mean that a procedure of working to finite orders in 
a perturbation expansion, even with high momentum components suppressed by 
a cutoff as we have done, is inadequate to represent the “wee” region correctly. 
In fact summing to all orders the leading contribution, term by term, in the region 
of high w or small x (“soft partons”) was found to lead to just such an exponentia- 
tion as (43) in our earlier [5] studies of VW, . 

What must we then do? First of all we will show that the derivation of the 
impulse approximation and hence of the scaling behavior in the Bjorken limit, 
which is the central result, is unaffected by the “wee” partons. We can do this on 
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grounds of kinematics, without reference to a specific model by verifying that the 
“wee” partons do not affect the energy argument in (39). A “wee” parton can 
appear in (14) in three different ways: (1) it is in the expansion of UP in (40) and is 
absorbed by group (B) as represented by Fig. lla; (2) it is exchanged between 
group (A) and group (B), as represented by Fig. llb; (3) it appears as a real 
particle in the final states as represented by Fig. 1 lc. We now consider each of these 
three cases separately, assuming there is only one “wee” parton in each case. 
Generalization to more complicated situations is obvious. 

----wee porton 

FIG. 11. Examples which show how the postulated existence of wee partons affects the 
picture shown in Fig. 10. The dashed line represents a wee parton or a system of wee partons. 

(1) The effective squared invariant mass M2 of a component of 1 UP) is 

where xi , ki, , mi are the fraction of longitudinal momentum, the transverse 
momentum, and the mass of the i-th constituent making up the particular compo- 
nent of 1 UP). If one of the particles in the above sum is wee, then as in (41) its 
xi = y w m/q and its contribution to (44) is 

kfL f mi 
Xi 

m Wm), Xi N mlq; 

which is smaller by order m/m or drn/v in comparison with (2Mv - q”) 
which appears in q” of (39). Even though the invariant mass is not finite, it is smaller 
than the leading term by M/m. Furthermore this statement is true even if the 
multiplicity of “wee” constituents increases in the manner conjectured by 
Feynman [l] to lead to constant total cross sections for hadronic processes as 
we discussed in Section II, i.e., as dx/x which by (41) leads to 

s dx 
x 

- In q/m. (45) 
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The same is true for the squared invariant mass of the scattered constituent plus 
the wee parton in the component of U ) n). Thus we still can ignore the energy 
differences between the states 1 P) and 1 UP), 1 n) and U 1 n). The impulse approxi- 
mation is therefore valid. 

(2) Again the corrections are of order q = d\/ez. To see this consider the 
diagram Fig. 12. The single lines PI , PI’, Pztw may represent groups of particles. 
We introduce the parameterizations (the particle with momentum k is wee) 

P, = (1 - X) P - k, , k = YP + k,’ (Y - m/q), 

P, = XP + k, , 

P,’ = xp + q, + (k, + 0, 

Pi = b - VI P + 43 + (k, + c, - kl’), 
P,’ = (1 - x + u) P - (k, - k,‘). 

FIG. 12. Example of a final state interaction between the two groups of particles in (A) and 
(B) of Fig. 10 introduced by exchange of wee partons. 

The energy difference between the states [ II) and U [ n) is computed directly as 

El’ f E; - El - E,’ 

= 
[ 
(1 - x + JI) P + “;,1-“:“;:,~“] 

+ [(x - Y) p + q3 + (k, + qL - k,‘)’ + M22 

2(x - Y> p 1 
- [ (1 -x)P+ ;b2?x$] - [xPfq,+ *,+yi;+““a], 

1 ==I- (k, + 41 - k,‘12 + M22 _ (k, + q,)2 + iv22 
2P ! X-Y X 

+ (k, - k,‘j2 + MI2 _ kl; $ “;“12 
l--x+y I 

, 

= WP). (46) 



602 DRELL AND YAN 

The leading terms proportional to qLa cancel as a result of the restriction y - M/q. 
Thus the difference is only of order q/P which can be neglected in comparison with 
q”* 

(3) The arguments are similar to case (1) and therefore it will not be discussed 
in detail. 

From the discussion above we have seen that the postulated existence of “wee” 
partons does not invalidate the impulse approximation (38) so long as their 
spectrum is not more singular than the dx/x indicated in (45). Consequently the 
parton model picture holds under these circumstances. Furthermore, by computing 
the laboratory energy of a final particle, ki = (l/M) P * Pi , in the infinite momen- 
tum frame (lla), it is straightforward to show that in the Bjorken limit the final 
particles are divided into three groups: 

(a) the nonwee particles from group (A) of Fig. 10 have finite energies; 

(b) the wee particles have energies proportional to ~Mv; 

(c) the nonwee particles in group (B) have energies proportional to v. 

In addition to the deep inelastic electron (or neutrino as well as antineutrino) 
scattering, the impulse approximation also applies to electron-positron pair 
annihilation e+ + e- ---f H + “anything” in the deep inelastic region of high 
energy, or large incident pair mass squared, q2, and large invariant energy transfer 
to the detected hadron v = (l/M) q . P. In an infinite momentum frame of the 
detected hadron, this process can be described [5] as the creation of an essentially 
free parton-antiparton pair and its subsequent decay into final states. It can also be 
studied in a similar fashion following the path given above. In particular the wee 
partons will not alter the predictions of scaling that we have derived in [5, Paper III]. 
The specific relation between the scattering and annihilation cross sections was 
based on an analysis with finite order perturbation theory which was used to 
derive the result that the structure functions for annihilation were continuations 
of those for scattering from the region w > 1 to w < 1. Whether this identification 
will be altered by the sum to all orders of the “wee” parton contributions is an open 
problem. 

V. MASSIVE LEPTON PAIR PRODUCTION IN HADRON-HADRON COLLISIONS 
AT VERY HIGH ENERGIES 

If we want to satisfy the kinematical constraints allowing application of the 
impulse approximation in hadron-hadron interactions we need look for inter- 
actions at high energies s which absorb or produce a lepton system of huge mass Qz 
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such that the ratio Q’/s is finite as we discussed in Section II. We shall discuss in 
detail here an observable process meeting this requirement [2], viz., 

p i-p-+&+/.-) + ... . 

Our remarks apply equally to any colliding pair such as (pp), (Isp), (np), (Kp), (yp) 
and to final leptons (p+p-), (ee), (PY), and (ev). 

For finite Qz/s one has the relation [see (lo)] 

Qz g x,x,s; 0 < x1.2 < 1, (47) 

where x1.2 are the fractions of the longitudinal momenta of their respective hadrons 
carried by the annihilating parton-antiparton pair as illustrated in Fig. 6. Here we 
are dealing with hard partons and with the same region of momenta as probed by 
deep inelastic electron scattering experiments which measure the parton distribu- 
tion 0 < x = Q2/2Mv < 1. In this process we are measuring over a range of x 
values for antipartons as well as partons as constrained by (47) for fixed Q2/s. 

Following standard calculational steps we obtain the general expression for the 
cross section to form a lepton pair of mass Q2 

1 __- - WQ2, s> __- 
x 7[sq4, + M2)2][s - (Ml - M2)2] 

where a spin average is understood and 

W(Q2, s) E - 1 6rr2E1E2 / (dq) 6(q2 - Q2) j (dx) eciqz 

x (PIPp) 1 J,(x) J”(0) [ P,Pp’) 

= -16r2EIE, s (dq) 8(q2 - Q2) 1 (25~)~ 8*(P1 + P2 - q - 
n 

x (P,P.p”’ 1 J, I n)(n I J” 1 P2Pyy 

(48) 

(49) 

PJ 

In (49) E1 , PI , Ml and E, , P, , M, are the energies, momenta, and masses of the 
two initial hadrons; nz is the muon mass: and Z is a sum over all unobserved 
hadron states. The integral over pair momenta, d*q, extends over the entire mass 
hyperboloid q2 = Q2 in the high energy limit. Restrictions on the phase space 
integral can be included to match experimental conditions and will be discussed 
later for comparison with Ref. [6]. 
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To simplify (49) in the limit s + co with Qz/s fixed, we may proceed either in the 
CM system of the two initial hadrons or a true infinite momentum frame defined 
earlier by (8). The final result, as required, is independent of the choice between the 
two types of coordinate systems. 

Since we will imitate the steps in our preceding analysis of deep inelastic pro- 
cesses [5] we work in a true infinite momentum frame as introduced in Section II by 
boosting from the collision center-of-mass frame by a velocity p/V’- = 2P/fi 
in a direction orthogonal to the collision axis. The four-vector momenta of the two 
incident colliding hadrons are then as in (8) for s > M2 

PI” = (P + & ) 0, P, ; I&), 

pzp= (P+&,o,P,+~). 

(50) 

We can now let P -+ co for large but finite s: P > ds> M. The energy in the 
collision is represented by a transverse momentum mismatch of the two colliding 
hadrons. For a parton, or a baryon or meson quantum in our field theory model, 
to be exchanged between them without introducing an asymptotically large 
momentum transverse to either of the two hadron lines, the parton momentum is 
restricted to a fraction - M/6 along the P axis and to a finite value - M 
orthogonal to it. This constraint corresponds to the “wee” parton condition in the 
center-of-mass frame of the colliding hadrons. In the P + co frame (50) this con- 
straint satisfies the condition of finite transverse momentum imposed on our field 
theory model. 

In this frame [2] we can repeat steps developed in earlier work of undressing 
the current operator by the U matrix: J,,(O) = U-%(O) U where j,(O) is the current 
operator expressed in terms of free fields. Furthermore the energy differences 
between the eigenstate [ PIP?‘) and the components of U(P,P$“> can be ignored 
in the limit s + co for Qz/.s finite; the same is true for 1 n) and U 1 n). This is so 
because the invariant mass of the individual system of particles moving along 
P, and P2 respectively in (50), or to the right and left in the center-of-mass frame, 
is negligible compared with the invariant mass 4 G appearing in (50) as a result 
of the transverse momentum cutoff imposed. In other words the impulse approxi- 
mation is good and energy as well as momentum is conserved across the electro- 
magnetic current vertex in (49). This leads to the simplification in the limBl for 
P + co; s > M2; Q2/s finite to 

l@ W = -167r2E1E2 I (dq) 8(q2 - Qz) I (dx) 

X e-iqYU(PlP2)in I j,(x) j”(0) 1 U(P2PJin>. (51) 
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A remark about the result (51) is in order because in our earlier work it was only 
the “good” components of the current (i.e., p = 0 and 3) that were explicitly 
studied and for which “undressing” was derived. Here we have to deal with a 
scalar product involving all four components. The “bad” components transverse 
to the infinite momentum direction give rise to the following complication. In the 
true infinite momentum frame (50), for a current component transverse to P the 
electromagnetic vertex is of order P when the colliding parton and antiparton are 
of spin l/2 and have longitudinal momenta opposite in direction relative to P as 
shown by 

i%P + k, 1 ; ~1) Y,G-xJ’ - k,, ; 2 - s 1 - f l/x,x,x*(h) oIx(-&) + O(l), (54 

where x is a two-component Pauli spinor. In such a case, however, the factor P in 
(52) is used in conjunction with another factor of P coming from a strong vertex 
which also behaves like a bad current and is very large, - P, when producing, 
annihilating, or scattering fermions with opposite sense of motion along P. These 
two factors of P compensate the l/P2 factor introduced by the bad energy denom- 
inator associated with an intermediate state involving particles of opposite 
longitudinal momenta. Thus, effectively, the electromagnetic vertex is of order 
unity. On the other hand, however, when all the particles move along the direction 
of the infinite momentum, the electromagnetic vertex of a transverse component 
of the current is of order d/s, introduced by the large transverse momentum 
mismatch of the colliding spin l/2 parton-antiparton pair. And there are no 
powers of P to cancel [12]. Consequently as s -+ co the contribution is negligible 
from an electromagnetic vertex with the annihilating parton-antiparton pair 
moving in opposite directions relative to P. Thus, the result (51) is valid in frame 
(50) for all four components of the current. The arguments given here are similar 
to those given in [5, Paper IV] in connection with neutrino scattering in which the 
use of transverse components of the current is also required. The key in deriving 
(51) as shown by our earlier work is that all particles be moving along the P + co 
direction at the instant of the current interaction, and the above argument verifies 
it in the high energy limit. 

Turning to the situation in the CM system, we expect each member of the 
annihilating pair to retain the direction of its original hadron. For such a case, 
i.e., the colliding parton and antiparton moving in opposite directions, it is inter- 
esting to notice that the transverse components of the currents for spin l/2 particles 
are the “good currents” and in this problem their vertices are of order 
P = l/2 z/s [see (52)]. When both of the pair move along the same direction, the 
corresponding vertices are of order unity. The reverse is true for the third and 
time components of the current. However, the unnatural possibility for the time 
and third components (with both particles moving along the same direction) can be 
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dismissed by a discussion similar to the previous one given in the true infinite 
momentum frame (50). Thus, again the result (51) is also valid for all components 
of the current in the CM system. 

Although the above discussion shows that the contribution of individual current 
components is very different in the two frames, the CM system and (50), we will 
now show that the final result is invariant as it should be. Proceeding in analogy 
with [5, Paper II, Eqs. (72)-(78)] we find for the annihilation of a boson pair 

C-1 j (&I Sk2 - Qz> j W e-iqx<kk2 I YW j,(O) I k&l) 

= (27~)~ S[Q” - 6% + k2)21 c2,+ (lc~~~~2w2~ (h - kdu (k - Wv 

= 16n;;lE2 6(x,x, - T); 

(53) 

T = Q2/s < 1, 

where X2 is the square of the charge of an individual parton and we have used the 
high energy approximation for the dominant large components of the momenta 
k,u = xlPlp, k,u = .x~P~~. For a fermion pair annihilation, we find 

(-1 j (4) Sk2 - Q2> j (W e-igYplsl , p2s2 I j,(~).?(O) I p2s2’, PA’) 

To simplify this expression, observe the identity 

WJF2~2'YU~l' = - ~[Wu(l + YJ %'fi,'Y'"O + rd 02 

+ GYli(l - YEJ %'52'Yl"U - 7%) JJZ 

- 4U,u,‘V,‘v,] 
(55) 

which shows clearly that the helicities of the annihilating pair must be opposite 
and the helicities are conserved, since the last term in (55) is negligible in the high 
energy limit. Now (54) and (55) lead in the high energy limit to 

u,y,v2z;,‘yuu,’ - 
1 

= - 3 [ 2Plw 7 .- 2P,” 1 A4 aa 11 (T! Su,u, su, ) -02 2 (56) 

where the G’S denote the helicities. Using the high energy approximation 
P:,~ = x~,~P~,~ , we obtain 

C-1 j (&I ah2 - Q2> j W e-ig2(pls1 , ~2s~ I j,h) YW 1~2~2’~ PA’) 

= 16n;;lE2 6(x,x, - T) * 2sa10, su,a,’ sa, ) -u2 . (57) 
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After a spin average (57) gives the same result as (53). As our procedure is covariant 
in every step, the result (57) is valid in the infinite momentum frame (50) and in the 
CM system. Using (52), (53), and (57) and inserting the identity 

we can bring (51) to the form 

where the summation over types of partons with charges h, pairs a parton of type 
a with its antiparton 5. 

The right side of (58) depends on the dimensionless ratio r = Q2/s, as explicitly 
indicated. It may also be a function of the total energy s = (P, + P2)2 via the 
states U(PlP2)in). Such s dependence could enter into the expansion coefficients of 
U(P,P$n), which is the hadronic state at the instant t = 0 that develops under 
the influence of the full hadronic dynamics from a two nucleon “in’‘-state at 
t -+ - co of total energy s: 

W,P,)““) = c G(s) I 12) 
R 

; I W>l” = 1. 
(59) 

If we assume that there exists a high energy limiting behavior to the expansion 
coefficients for the n particle states, i.e., 

then, in this limit, (58) will be independent of s and we can write 

1;~ W(Q2, s) = W(T). (61) 

Then from (48) we can write the differential cross section in a simple scaling form 

(62) 



see by comparison with (78), (79), and (80) of [5, 
Paper II] that (58) can be rewritten as 

S(T) = T l&r W(Q2, s) 
(64) 

in terms of the invariant structure functions F2’z,(wl) = VW? introduced in the 
deep inelastic scattering analyses (see (78) of [5, Paper II]) for l/o, times the prob- 
ability of finding parton of type a in the proton (or hadron (A) in Fig. 6) with a 
momentum fraction x1 = l/w, . &(w,) has the same significance for the correspond- 
ing antiparton distribution in hadron (B). 

The differential cross section (62) now assumes the simple form in the scaling 
limit 

(65) 

where we have rewritten the invariant structure functions in terms of momentum 
fraction X. Presumably the “wee” quanta ignored in deriving (65) from a factored 
state (63) are needed to generate Feynman’s spectrum of “wee” or infrared quanta, 
dx/x, for explaining real hadron cross sections as we described in Section II. As we 
also discussed earlier the “wee” region is prominent only when we sum their 
contributions to all orders, a la Chang and Yan [l 11, although to each finite order 
of calculation they are unimportant. We can verify explicitly that, order by order, 
the “wee” partons have no effect on our results for massive lepton pair production. 
To show this let us suppose that we include “wee” parton exchanges between the 
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two systems (A) and (B) before or after the parton-antiparton annihilation takes 
place in Fig. 6. Precisely because the transferred momenta are “wee”, these inter- 
actions can change the kinematic relations only by a relatively negligible amount. 

As a simple example consider the diagram in Fig. 13 in which the momentum k 
is wee and we are in the CM system. It can be easily checked that the impulse 
approximation is valid and that energy conservation requires (with neglect of 
masses and transverse momenta) 

2P = (1 - x1 - x) P + (1 - x2 - X) P + d/(x1 - x2)2 P2 + p 

or 

Xl + x2 + 2x = li 
(Xl - x2)2 + 4F. 

But x N l/P, so it can be neglected and 

x1x2 = Q2/s. 

These corrections therefore do not affect our arguments leading to (51) which in 
turn implies (58) and the general scaling (62). Therefore although the invariant 
function F’(T) will be modified from (64) to (61) by the “wee” exchanges when 
fully computed to all orders, the general scaling property will not be affected. Based 
on this observation we would like to emphasize that although “wee” exchanges 
must survive at infinite energies to account for a nonvanishing total cross section 
of hadron-hadron collisions, they are not relevant to the massive muon pair 
production in proton-proton scattering considered here. We argued in Section IV 
that they also did not affect the Bjorken scaling behavior of deep inelastic lepton 
processes such as electron scattering and electron-positron annihilation. A non- 
trivial Bjorken scaling behavior and the validity of the impulse approximation for 
these processes are independent of whether or not the total cross section for 
hadrons vanishes at high energies. 

In addition to scaling, there are a number of general features of the cross section 
that can be established without specific reference to the role of the “wee” partons. 

P,=P 4 P: 
. 

P;=(I-X,JP-h,L 

‘\ 
h,-\ ,;‘I” 

h,‘X,P+hli 

P;=-(I-X2)P+k2L 
,-s 

h2 -I 
h2=-X2P-h21 

xv / / 
h=XP-hi, X-f 

Pz=-P 
Pi Pz” 

. PI’=(I-X,-X)P-(hll+hl) 

P~=-(l-XZ-X)P+(kZI+ki) 

FIG. 13. Example of an initial state interaction in massive pair production in proton-proton 
scattering. 

59!#6/2-14 
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These include a sum rule, the angular distribution, and the polarization of the 
current, or massive lepton pair, emerging from the interaction: 

(1) A sum rule can be derived from (48) and (58) in the high energy limit 
s -+ co by forming the weighted cross section integral 

I 1 (Q2), -& 4 = j: Q2 -& dQ” = y ( U(P,P2)in 1 c x,2 1 U(P,P,)i”). (66) 
a 

Equation (66) is analogous to the sum rule for the sum of the mean square charges 
of the partons, or constituents in the one proton state (see (78) and (81) 
of [5, Paper II]) 

(67) 

and is subject to the same question of convergence, i.e., does the integral exist. 
In neither case is it experimentally clear. In terms of a factorized model with no 
“wee” partons we can use (65) to reduce (66) to 

’ (Q2)2 m!& $ = $t? 
(68) 

0 

Both (67) and (68) involve the same weighting of the parton momentum distri- 
bution. Higher moments can also be introduced for better convergence 

s 1 (Q2), -& ?-l dT = F ; I+ j: F2,(x) xn-l dx j: F&(y) yn-’ dyt . (69) 

These relations may be of use in comparing specific parton models. Returning 
to (48) and (49) we can identify the general ingredient of the sum rule (66) as a 
spectral constraint. In (49) an integral over the entire range of masses Jz- dQ” 
allows closure to be carried out. Experimentally however the range is confined to 
the time-like interval 0 < Qz < S. The parton model, and in particular the predic- 
tion that it is via the parton-antiparton annihilation described in Fig, 6 and with 
the kinematic relation 0 < x,x, = Qz/s < 1, ensures that the dominant contribu- 
tion at high energies comes only from the time-like region 0 < Qz < s and thus 
permits closure in (49). We find then 

s 
’ dQ2 W(Q2, s) = 16~“&&(27r)~ (U(PlP2)i” [ --j,,(O) j“(0) 1 U(PlP2)i”) (70) 
0 

in the parton model. 
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(2) The angular distribution of the vector q = P, + P- , the total momentum 
of the muon pair, is peaked along the incident nucleon’s direction in the lab system. 
This follows from the observation that q . PI = (xlPl + x,P,) . PI g +x2s and 
q . P, G $X,S are invariant, and in terms of laboratory variables we have 

q . Pz = qLoM2. 

Denoting by I!& the angle between q and P, in the lab we write 

sin 5, = 41 = ---= 
I qL I l/(qLo;- Qz 

The transverse momentum cutoff that appears in our analysis limits 

4Jmax R+ 2 x 400 MeV = 800 MeV. 

It follows then that 

We expect to see such a strong peaking in the cross section for 

(71) 

(72) 

(73) 

(74) 

1 x -=----=---p 
d[s - (Ml + MJ2][,s - (Ml - MJ2] w_i(Q2’ ‘A ’ ‘)’ (75) 

with 

WdQ’, 41, s) = -16~2W2 j dq, dqo %q2 - Qz> j (dx) 

x e--hr<plpy 1 J,(x) J’“(0) 1 P2Pf=)). (76) 

(3) In order to determine the angular distribution of the lepton pair emerging 
from the interaction we want to examine the contribution of each current compo- 
nent in the CM system of the collision. In this system the asymptotically large 
vector q coincides in direction, neglecting finite bounded transverse momenta of 
the annihilating parton and antiparton, with the collision axis of the two initial 
hadrons. Thus the contributions of the transverse current components correspond 
to the production of a transversely polarized virtual photon while the contributions 
of the longitudinal and time components of the current correspond to the produc- 
tion of a longitudinally polarized virtual photon. For this purpose we must com- 
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pute the contribution of each component of the current, not just the scalar product 
as in (55). Using (52) and the fact that 

4G’ + kd ” I t y3 G-x,P - k,,) = O(l), (77) 

we find that the dominant contribution for a spin l/2 pair annihilation comes 
from the transverse components of the current. Moreover, explicit calculation 
using (52) verifies that the right side of (57) is entirely due to the sum of the two 
transverse components. 

On the other hand, for a spin 0 pair annihilation the dominant contribution 
comes from the longitudinal and time components of the current, since in (53) 

(k13 - k,,)2 - (k,O - k20)2 = (x1 + .2)2 p2 - (Xl - x212 p29 
(78) 

= X1X2& 

while 

(k,, - k,d2 2 ~~m,x. (79) 

This observation leads to the conclusion that if a spin l/2 current is dominant the 
virtual photons produced are predominantly transversely polarized, while if a spin 
0 current is dominant the virtual photons produced should be predominantly 
longitudinally polarized. These two cases correspond to a distribution in the center- 
of-mass system of the lepton pair that varies as (1 + cos2 0) for spin l/2 partons 
and as sin2 0 for spin 0 partons where 0 is the angle of the lepton relative to the 
virtual time-like photon direction. 

The data of deep inelastic electron scattering suggest that a spin l/2 current is 
dominant. Accordingly this would lead us to expect, that the time-like virtual 
photons in the p-pair production in this deep inelastic region should be 
predominantly transversely polarized. 

The above results can of course also be transcribed directly to the weak currents, 
i.e., the production of a p+v or p-6 pair by pp scattering. The correspondence with 
the @cc- pair production is given by the substitution 

4m MW2 
-+&+Q2’ Q2 

(80) 
J, - Ju”, 

where G is the Fermi coupling constant, Mw the mass of the intermediate vector 
boson and J,” the Cabbibo current. A factor of 2 should also be introduced into 
du/dQ” as the vector and axial part of the lepton current contribute equally. There 
is no interference between the axial and vector current if only the total momentum 
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vector qu of the pair is observed. The differential cross section for producing 
p--C pairs with squared invariant mass Qz is 

where a spin average is understood and 

W’(Q2, s) = -16r2E,E, / (dq) 6(q2 - Q2) 1 (dx) 

x e+” ( g”” - 7) (PJ’~’ j J;+(x) J,“(O) 1 P2Pli”‘). (82) 

In (81) the lepton masses are neglected. In the scaling limit we have 

“iii wl(Q”, s) = l+“(7) (83) 

and 

-g (p-S) = +g ( MwFy Q2 )” TV(T). (84) 

. Notice that if the vector boson does not exist-or has infinite mass so that the weak 
interaction is local-we take the limit {MW2/MW2 - Q2)} + 1. Then the differential 
cross section du/dQ” becomes scale invariant. It is independent of Q2 and is a 
function of the ratio T = Qz/s only. It will be of particular interest to search for 
a deviation from such a scaling law for the weak currents if scaling is verified for 
the electromagnetic pair production. If such a deviation is observed as an enhance- 
ment at high Q2 and c,an be fit to a form [Mw2/(Mw2 - Q2)12, we can interpret it in 
terms of a finite mass for the vector boson of the weak interactions. 

With the neglect of “wee” parton contributions (58) reduces to (64) and the 
cross section can be expressed as a product of structure functions for the parton 
and antiparton distributions in one-body states. These distributions are integrated 
over all momentum fractions x1 and x2 consistent with the kinematic constraint 
x1x2 = Q2/.s = T. Deep inelastic electron scattering measures the sum of the 
parton and antiparton contributions as a function of 0 < x E Q”/~Mv < 1. Here 
however we require the product of these contributions. To help unravel these 
individual terms it would also be of great interest to study @ as well as pp scat- 
tering. Moreover the full range of possibilities including up, kp, yp will be of 
great interest to study in order to compare their spectra, as well as to measure their 
effective charges h2. [Note added in proof: A study of the yp-process has been 
completed by R. L. Jaffe to appear in Phys. Rev.] 
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These comparisons are dependent however on the assumption that wee partons 
can be ignored. There is no small expansion parameter in terms of which to 
measure the quality of such an approximation. The problem presented by the 
“wee” partons is illustrated in Fig. 14. What we show here is elastic exchange of 
a single “wee” parton between the two colliding protons. Since the wee exchanges 
involve large energy denominators as we recall from (1) we may view them as 
occurring instantaneously on the longer time scale of the hard parton states. With 
the momentum labels as drawn this exchange has introduced a momentum depend- 
ence via an energy denominator 

and has coupled the transverse momentum structure of the two-proton states. 
Factoring as in (63) is hence impossible and we can no longer derive the product 
form of (65). As emphasized earlier the scaling dependence is unaffected. In the 
limit of purely forward scattering by the wee exchanges this problem can be avoided 
since no change occurs in the transverse momenta. Moreover the change of longi- 
tudinal momenta is of order l/P and negligible. However we know that the wee 
exchanges must do more than simply forward scatter at O”. Experimentally the 
high energy cross sections have diffraction peaks that typically are of 
350-400 MeV/c width in transverse momentum and this, being comparable to 
the transverse momenta appearing in our parton distribution, cannot in general 
be neglected. Our formal theoretical methods are not adequate for making a more 
detailed study of the role of these wee exchanges and their effect on the T dependence 
of F(T). If we simply ignore them we can make some qualitative observations 
from the comparison of (65) with the preliminary data of Ref. [6]. 

9 P(=X,P-aiP+kL-qL 

k=aip+ql 

FIG. 14. Example to illustrate how the initial state interaction due to wee exchange affects 
the structure function for massive pair production. 

The data to which we want to compare (65) was obtained by taking a limited 
cut of the events leading to a given lepton pair mass of Q2. Only those events were 
detected for high energy protons incident on a uranium nucleus leading to muon 
pairs of total momentum q > 12 GeV/c and emerging with qL/q < l/16 in the 
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laboratory system. Therefore these actual experimental resolution functions must 
be introduced before a detailed comparison can be made. The angular constraint 
includes all transverse momenta up to at least qL = l/16(12 GeV/c) = 750 MeV/c. 
This value is sufficiently close to our actual transverse momentum cutoff in (73) 
that for purpose of comparison we include all solid angles in (65). However a 
longitudinal momentum cutoff corresponding to qmin = 12 GeV/c must be intro- 
duced as we do in the following way. Denoting the laboratory momentum of the 
target nucleon by 

Pzu = (44, , 0) and the pair by q” = (qLo, qL) (86) 

we can write the magnitude of the pair momentum in the laboratory frame as 

qL = 2/‘(q * P,)2/M,2 - Qz s .\/qp - Q2. (87) 

An invariant expression for qL O in terms of the fraction of momenta on the col- 
liding parton pair is given by 

M,q,O = q . P, = P, . (x,P, + x2P2) m gx,s. (88) 

We can also write, as we already have a number of times, 

Q2 = x1x2x 

Collecting we have in the kinematic region of interest 

The content of (89) is that the asymptotically large momentum of the lepton pair 
is given simply by the incident nucleon momentum, s/2Mz in the laboratory 
system, multiplied by x1 , the fraction of that momentum carried by the annihilating 
parton. In this limit the momentum components in the target state (at rest) are 
negligible. The experimental constraint that qL > qLmin = 12 GeV/c now can be 
expressed as a step function to be inserted directly into (65): 

(& = (G)(S) j: 6 j: dx2 

x; e x2-- 
[ i 

2MlqLrnin 
s > ( 

+ 0 X1 - 2M2qLla )] 
s 

x ww2 - 4 ; +2dxl) &(x2), 

(90) 

a 

4rrc2 1 
c 3~2 ( ) -p- -e(T). 
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In writing (90) we have symmetrized the expression in terms of parton and anti- 
parton. The sum is to be taken over different types of antipartons as well as partons. 
The observed rapid decrease of the inelastic structure functions F,(x) = v W, as 
x---f 1 leads in (65) and (90) to a prediction of a very rapid falloff in FE(~) with 
increasing Q2, or T. If we assume that the parton and antiparton have identical 
momentum distributions in the proton, and this is common for all parton types A, 
we can compute du/dQ” directly from measured F,(X), finding a very rapid falloff 
in the cross section as shown in Fig. 15, even though the model consists of point- 
like constituents. For comparison a dotted curve is drawn in Fig. 15 to show the 
effect of the experimental resolution in reducing the cross section below the full 
value in (65). The slope of the theoretical curve fits the preliminary experimental 
findings in the range of Q2 from Q2 = 2(GeV/c)2 to Q2 = 10 (GeV/c)2. However 
there is an apparent bump in the observed spectrum that exceeds our calculated 
curve by a factor of 2-3 in the interval of Q2 = 10-20 (GeV/c)2. 

01234567 
./s. mp&a/c~) 

FIG. 15. da/d X@ computed from Eq. (90) assuming identical parton and antiparton 
momentum distributions. The normalization is fitted to the curve. The solid curve includes the 
effect of the experimental resolution q~ > 12 GeV. The dashed curve includes all phase space. 

We will not speculate*here on the possible significance of such a bump [13]. 
Recall that our prediction is based on an assumption of identical momentum 
distributions for antipartons and for partons as constituents of the physical proton. 
We have no evidence for such an assumption. If we think of the partons as quarks 
then the antiquark or antiparton distribution of a proton state may have very little 
relation to the parton distribution as observed in inelastic proton scattering. If we 
think of the proton as built of three quarks plus a background sea or glue of quark 
pairs then the antiquark distribution for this analysis should be correlated only to 
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that portion of the inelastic electron scattering that remains after the contribution 
of the simple three-quark model for the neutron and proton is removed. Evidence 
of the importance of this background sea or glue is now available from experi- 
ments on electron scattering from neutrons as well as protons [14]. It is clear from 
these experiments that the contribution of this sea or glue must be very important 
in order to explain the results. A further measure of the importance of the back- 
ground sea comes from the normalization of the theoretical curve to the data in 
Fig. 15. We have used a relatively small value of l/h2 N (l/2) - 1 in (90) in order 
to adjust the calculated curve to the data. This value is in contrast to typical values 
of 1/(1/3)2 = 9 or 1/(2/3)2 = 9/4 associated with the quark model and suggests as 
in the analysis of the data [14] that the sea and the three quarks are both of com- 
parable importance. 

To paint the “real” picture of the proton’s structure we shall need all the clues 
that come from massive lepton pair production in hadron-hadron collisions 
together with deep inelastic scattering results from neutrons and protons. The 
first step here is to verify the scaling law (62). 

VI. LIGHT CONE BEHAVIOR 

In this final section we discuss briefly the possible role of singularities near the 
light cone in controlling the behavior of (49) and, through it, in determining the 
energy and mass dependence of this cross section. Arguments of this type have 
shed light on scaling behavior for the deep inelastic scattering process in the 
Bjorken limit in terms of singularities of almost equal time commutators. In (49) 
we are not computing a commutator but simply a product of currents. However as 
the momentum q carried by the current grows large one might argue that the 
dominant coordinate values in (49) will decrease so that the product q * x is finite. 
Contributions from other space-time regions will presumably be damped by the 
very rapid oscillations of eiq’“. Such an approach has been proposed and studied by 
Altarelli, Brandt, and Preparata [ 151 who in this way arrive at a different functional 
form than we have found in this work. Specifically our scaling result of (58), 

da 1 2 
de” - -@- P(T) i > 

is replaced in their work by a form 

da 
-i&Y- ( 

G,(T) + G,(T) 
1 Ml4 M22Q2 ’ 

containing two scale factors Ml and M, and two scale invariant functions Gi(7) 
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which can be further simplified if Regge pole behavior is assumed to dominate. 
Before commenting on this argument let us review how analogous ones have been 
applied to the study of almost equal time commutators in the deep inelastic 
process in the Bjorken limit [16]. 

In order to illustrate the sense in which x@ --f 0, i.e., how the interval decreases 
so that only the short distance behavior of J,(x) J”(O) need be considered in (14) we 
find it convenient to work in the laboratory frame of the target proton 

Pu = (M, 0). 

For deep inelastic scattering in the Bjorken limit the photon momentum is to 
leading order 

4” g Y (1’ 0, 0, 1 + =-); w = 2Mv/Q” > 1, 

and the exponential in (14) is 

e it7.x g exp{iv(xO - x,) - Mx&}. (94) 

The important space time interval, assumed to be the coordinate domain over 
which the integrand is not modulated by very rapid oscillations, is then 

I%-x31 5 w-+0, 

x3, xo 5 4M i.e., finite, 

and by causality 

(95) 

Throughout the region defined by (95) and illustrated in Fig. 16 the scalar variables 
in the matrix element multiplying the exponent extend over a finite range also, i.e., 

0 - X,X@ --t 0; and x *P = Mx, - w, i.e., finite. 

With these constraints we see that the region along a finite segment of the light 
cone of length N w/M and within an asymptotically vanishing invariant interval 
N v’W in the time-like region about the light cone may be expected to deter- 
mine the structure functions. By study of the current commutator and its 
singularities for a finite interval of length - w/M along the light cone but only 
infinitesimally removed from it we can analyze the meaning of scaling in the 
Bjorken region. 
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FIG. 16. The space-time region which gives the dominant contribution to the current com- 
mutator in electron-proton scattering in the Bjorken scaling limit (heavily shaded), and hadron- 
hadron scattering at high energies (lightly shaded). The first quadrant only is shown. 

In contrast consider the space-time region of importance for high energy hadron- 
hadron total cross sections which can be obtained by unitarity from the imaginary 
part of (14) with q representing the four momentum of the incident nucleon in the 
laboratory system 

4” E v (1, 0, 0, 1 - -$ 
1 . 

In this case 

ein” s exp 1 
iI42 

iv(xo - x3) + i z x3 , 1 

and the important interval in contrast with (95) is 

and 

x3, x,, 5 s i.e., unbounded and --t cc with v 

1 
i.e., finite. 

(96) 

(97) 

For these processes which are usually studied in terms of Regge parameterization 
we are concerned with the region along an infinitely long segment of the light cone 
and of finite invariant width into the time-like region. 

In this case we must know the behavior of the matrix element of the current 
commutators throughout a finite tube around the light cone but of infinitely long 
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length along the cone according to (97), unless the current operators themselves 
introduce a damping before 

P-x=Mx, grows to - - -+ co 
11; 

This difference in the space-time descriptions corresponds to the difference 
between the “wee” parton and the hard parton or impulse approximation regimes 
as we have earlier described them. In the Regge region the limit is always taken 
such that u/M--t 00 whereas the corresponding parameter in the Bjorken limit is 
w = (2Mv/Q”) = l/x and is finite. Since the experimental value of a Regge pole 
parameterization of high energy processes has been established only for finite mass 
particles (real ones on their mass shells) entering the interaction we have no guide 
for continuing amplitudes between the Regge and impulse regimes. In order to 
relate the behavior of the matrix elements in either of these regimes, one finite and 
one asymptotically infinite, to singularities at the tip of the light cone 

x@+O; p = 0,1,2,3 

that have been analyzed by Wilson [17], added smoothness assumptions are 
required. In particular observed scaling in the Bjorken limit is used to select the 
correct behavior [ 161. 

However when we turn to the massive pair formation in (49) we are no longer 
confined by the kinematics to the neighborhood of the light cone region; also 
since (49) contains a product of current operators, not a commutator, the matrix 
element does not vanish outside of the light cone for space-like separations. In 
contrast to the scattering where we could take the limit q -+ co in the laboratory 
frame we must here deal with the limiting process 

q + co and s ---f co so that Qz/s < 1 and finite 

The limit q -+ 00 with fixed P, and P2 in (49) corresponds to 

Q2/s -+ 00 

and is very far removed from the experimental regime of study and interest. But 
is is just this region of asymptotically large Q2/s that we properly probe in a 
theoretical study by taking the ~7” + cc limit and expanding the matrix element 
about the origin in a power series as a function of x,x” and x . (PI + Pz>, as 
xfi -+ 0. There is no assurance that such an expansion procedure works in the 
experimental region of interest. The relevance of the light cone x,x” - 0 for the 
analysis of massive mu-pair production as claimed by Alteralli et al. [15] depends 
on the assumed smooth behavior of the matrix element independent of whatever 
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may be its s + co limiting properties as we take Qz -+ co with Qz/s < 1. For 
Q2 -+ co, with s fixed, the expansion about the light cone would be an elegant 
approach to this study, but for the experimentally accessible region, a very major 
extrapolation of the behavior of the matrix element is required. The mathematical 
conditions and assumptions for justifying the interchange of the limits s -+ co and 
Q2 + cc in Eq. (49) are discussed in Ref. [15]. 

CONCLUSION 

We have described how the impulse approximation, whose roots lie in the low 
energy domain of atomic and nuclear bound states, finds a wide class of applica- 
tions in the high energy electromagnetic and weak processes of the tightly bound 
systems forming single hadrons. For the latter we have to work in a properly chosen 
infinite momentum frame of the hadron system in order that the strong binding, as 
viewed in the laboratory frame, can be neglected as a consequence of the Lorentz 
dilatation of time scale. Only in such a system can we apply our intuition to working 
with almost free constituents-whatever and however many there may be-of the 
proton state. For atomic and nuclear systems the laboratory frame is a good 
working coordinate system since the binding of these systems is relatively much 
weaker. 

Apart from this coordinate dependence of this approximation, atomic as well as 
nuclear processes and the deep inelastic hadronic processes are not very different 
conceptually. This analogy, although only qualitative, allows us to borrow the 
well-developed intuitive understanding of low energy nuclear physics as a guide to 
search for the clues of high energy or short distance substructure of the hadronic 
systems. Indeed, within the same framework of the impulse approximation we are 
able to give a unified treatment to the various deep inelastic processes involving one 
current, electromagnetic or weak: electron scattering, neutrino as well as anti- 
neutrino scattering, electron-positron annihilation into hadrons, massive lepton 
pair production in hadron-hadron collisions. Our goal has been to derive general 
scaling laws beyond the original accomplishment of Bjorken [4] who used the 
powerful, formal methods of dispersion theory and current algebra where they 
were applicable to the deep inelastic scattering. We have also related the different 
scaling processes in as model independent a way as possible, relating the electron 
scattering to electron-positron annihilation [5], neutrino scattering to antineutrino 
scattering [5], and electron scattering to neutrino scattering [5], massive pair 
production to electron scattering [2], and the threshold behavior of the structure 
function for electron scattering to the asymptotic behavior of the elastic nucleon 
form factors [7]. These relations are all empirically testable and probably will be 
confronted with experimental data in the near future. If they are found to be 
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correct they will lend strong support to the applicability and utility of the impulse 
approximation to these deep inelastic high energy processes involving the hard 
partons. 

On the other hand validity of the scaling predictions, but not of the specific 
relations between the different processes, will bring the role of wee exchanges to 
the fore. As we have shown they do not effect the scaling arguments and to any 
finite order of calculation we can neglect the wee exchanges in relating electron 
scattering to e+e- pair annihilation or massive lepton pair production. However 
they may “exponentiate” to prominance when all orders are summed up [l l] and 
provide an effective initial or final state interaction that will alter the specific 
predictions without destroying the validity of the impulse approximation. 

The problem of wee parton exchange is obviously very difficult. Our treatment 
in this paper with respect to the “wees” is certainly not dynamical but kinematical. 
It is hoped that the recent high order calculations in certain field theory models will 
eventually lead to a more complete treatment of these wee partons, although 
undoubtedly that day is still not in sight [l 1, 181. 

In addition to the role of the wee partons there are two other open issues not 
addressed by our approach: 

(1) When and how does scaling set in with increasing Q2, S, or Mv ? 
(2) Where does the transverse momentum cutoff come from, and in detail 

how is it related to the conditions of vanishing wavefunction renormalization as we 
have conjectured [7, 5]? 
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