# Laboratory 8

#### **A**: /4**B**: /3**C**: /3 **D**: /5 **Tot:**

# **Relaxation Oscillators**

This lab consists of three modules. We will see how parasitic effects can occasionally be used to a designer's advantage

# Part A: Capacitor in feedback loop



Consider the circuit of Fig 1. Notice the difference from standard inverting feedback amplifier: the feedback resistor has been replaced by a capacitor  $C_{f}$ .

Consider the mathematics below and choose the correct type of capacitor  $C_f$  (electrolytic or non-polar) C must be non-polar polystyrene signal cap

**Q1:**Calculate the *time-domain* response of V<sub>out</sub>to V<sub>in</sub>. We have generally calculated the gain of such feedback circuits as  $(1+Z_f/Z_s)$  where  $Z_f$  and  $Z_s$  are the impedances in the feedback and source connections. The time-domain response requires you to apply the golden rules of opamp design and the current-voltage relationship for a capacitor  $I = C \frac{dV}{dt}$  followed by some algebra. /1

Current at (-) input :  $V_{in}/R + C dV_o/dt = 0$  so  $V_o = -1/RC[V_{in}dt \rightarrow Integrator (with - sign)]$ 

**Q2:** Choose suitable values of the passive components  $R_s$ ,  $C_f$  such that the time constant of your design is 1 ms.

Q3: Build the circuit of Fig 1 and drive it with a squareV<sub>in</sub> of amplitude 2V peak-to-peak. Draw a diagram of your observations here and verify that your calculations of Q1 above are correct.

Square integration  $\rightarrow$  triangular waveform

Q4:Set V<sub>in</sub>=0 by grounding it. Turn off supply to the circuit. When you turn the supply back on, observe the trace of  $V_{out}$  on a long time scale ~1 sec on the DSO. Record your observations here, and state a possible hypothesis for the observed behavior

Small internal input offset voltage of opamp ( $V_{os}$ ) is integrated until the output saturates

/1

/1

## Part B: Capacitor connected at Input



Consider the circuit of Fig 2. Notice the difference from standard inverting feedback amplifier: the *source* resistor has been replaced by a capacitor  $C_{s}$ .

**Q1:**Calculate the *time-domain* response of  $V_{out}$  to  $V_{in}$  as in Part A. The time-domain response requires you to apply the golden rules of opamp design *and* the current-voltage relationship for a capacitor I = C  ${}^{dV}/_{dt}$  followed by some algebra.

Current at (-) input :  $V_o/R + C dV_{in}/dt = 0$  so  $V_o = - RCdV_{in}/dt \rightarrow Differentiator (with - sign)$ 

**<u>Q2</u>**: Choose suitable values of the passive components  $R_s$ ,  $C_f$  such that the time constant of your design is 1 ms.

**Q3:** Build the circuit of Fig 2 and drive it with a *squareV*<sub>in</sub> of amplitude 2V peak-to-peak. Draw a diagram of your observations here and verify that your calculations of Q1 above are correct.

Square differentiate  $\rightarrow$  flat 0 except +/- delta functions at edges

/1

/1

/1

# Part C: Comparator

Recall the simple comparator (with Hysteresis) circuit using positive feedback we studied earlier in Lab 2. The function of a comparatoris to feedback a fraction of  $V_{out}$  to the (+) input so that when  $V_{in}$  exceeds a threshold set by the feedback fraction  $R_f^+/R^+$ , the output switches to  $-V_{sat}$  and when  $V_{in}$  falls below threshold, output switches to  $+V_{sat}$ 

Use your memory/logic and draw the diagram of a simple comparator circuit here, with  $V_{in} = 0$ 



Fig 3: Simple comparator with positive feedback. Set the reference voltage for comparison to  $V_{sat} * (R^+/R_f^+ + R^+)$ 



/0.25

In view of your measurements in Part A and Part B:

**Q1**:*Predict* the value of  $V_{out}$  in your circuit with  $V_{in} = 0$ :

a) What is *V*<sub>out</sub> at t=0 immediately when the circuit is turned on? 0V b) What is *V*<sub>out</sub> in the very short time ~ microseconds after the circuit is turned on? /0.5

c) What is  $V_{out}$ in steady state after the circuit has been on for a few seconds: +/- V<sub>sat</sub>

Q2: Connect up the circuit you have designed in Fig 3 and demonstrate the validity of your predictions

Use this space to record your DSO observations of  $V_{out}$  in detail. Note that  $V_{in} = 0$  for a), b), c)

/1.5

/0.25

## Part D: Relaxation oscillator

Use your observations and conclusions from Parts A, B and C to make an opamp circuit that demonstrates the following behavior:

- 1. It's  $V_{out}$  oscillates between  $+V_{sat}$  and  $-V_{sat}$
- 2. It has no external V<sub>in</sub> applied
- 3. The oscillation time period is 1 ms

Hint: You will need to use Part C and any one of Parts A or B

Draw your circuit design here. Calculate and mark the value of the components required.

Comparator with differentiator in negative feedback loop Relies on delta function created by 0 to +V<sub>sat</sub> switching to force output to switch to –V<sub>sat</sub> and vice-versa

/2.5

/2.5

This type of oscillator is called a 'Relaxation Oscillator'. Build your circuit and demonstrate its operation