Electrical characterization of silicon micro-strip sensors

Nicoleta Dinu

National Institute of Nuclear Physics – Perugia, Italy On leave from Institute of Space Sciences – Bucharest, Romania

Fermi National Accelerator Laboratory, 27 May 2003

Summary of the talk

Introduction

- About the lecturer
- Historical perspective and motivation

Examples of sensor design

- CMS sensor (single-sided AC-coupled poly-silicon biased sensor)
- AMS sensor (double-sided DC-coupled punch-through biased sensor)

Electrical characterization

- Hardware set-up
- Electrical parameters
- Characteristic defects detected during electrical characterization

Conclusions

Introduction - about the lecturer

> A brief CV

Faculty of Physics, Nuclear Physics Section, Bucharest, Romania

- Scholarship at National Institute of Nuclear Physics (INFN), Perugia Univ., Italy
 - Worked on electrical characterization of silicon micro-strip sensors for the AMS01 and the CMS experiments
- PhD. at Institute of Physics and Nuclear Engineering Horia Hulubei, Bucharest, Romania
 - Thesis: "Modifications of crystals properties using stable and radioactive ion beams"
 - Worked at Joint Institute of Nuclear Research (JINR), Laboratory of Nuclear Reactions/Center of Applied Physics, Dubna; studies of the effect of heavy ion irradiation on distribution and electrically activity of boron in silicon

Post-doc at INFN, Perugia Univ., Italy

- Worked on studies of electrical properties of silicon micro-strip silicon sensors for the CMS and the AMS02 experiments
- Senior researcher III, Institute of Space Sciences, Laboratory of Space Researches, Bucharest, Romania

Introduction - historical perspective (1)

- > Physicists always wanted to understand the fundamental laws of nature
- Astrophysics and particle accelerators go "hand in hand" to find answers to unsolved physics problems
 - Astrophysics
 - Cosmic rays (Hess, 1912) natural source for very high energy particles
 - e⁺, μ⁺, μ⁻, π⁺, π⁻, K, Λ, Σ, Ξ⁻ first elementary particles discovered before the advent of particle accelerators
 - Particle accelerators
 - First particle accelerators (~ 1950) allowed more systematic studies using artificial particles
 - The great advantage the beams could be produced with known energies and directed precisely onto the target
- Determination of particle trajectories basic requirement in astrophysics and particle accelerator fields
- Silicon tracking systems high precision tracking devices for measuring of particle parameters

Introduction - silicon detectors (2)

- Challenging features of silicon tracking detectors:
 - © High spatial resolution
 - © Compactness in size
 - © Very fast response time
 - © Low power consumption
 - © Good operation in vacuum and strong magnetic fields
 - © High radiation hardness
- Large usage in high radiation environments in particle accelerator experiments:
 - Fixed target experiments:
 - HERA-B, HERMES, COMPAS and others.
 - Collider experiments:
 - CDF, D0, BTeV at Tevatron p-antiproton collider FNAL;
 - CMS, LHCb, ATLAS and ALICE at LHC p-p collider CERN;
 - STAR, PHENIX, PHOBOS, BRAHMS at RHIC heavy ion collider;
 - BABAR, BELLE, CLEO at B-factory colliders;
 - H1 and ZEUS at HERA e-p collider.
- Large usage in space experiments:
 - AMS, GLAST, PAMELA, AGILE, NINA and others.

Introduction - motivation (3)

- Particle detection efficiency and spatial resolution of the silicon tracking detectors
 - depend strongly on the electrical properties of their basic element: <u>the silicon</u> <u>sensor</u>
- Electrical properties of the silicon sensors:
 - contribute to the noise at the input of the read-out electronics
 - influence the performances of the detector
- Very accurate electrical characterization have to be performed prior final assembly of the silicon sensors
 - to obtain the best possible signal-to-noise ratio
 - to guarantee the quality of the measurements during all the data taking period

Examples of sensor design (1)

Choosing of the sensor design must follow the physics requirements of desired experiment

Important criteria for silicon micro-strip sensors design optimisation:

- position-measurement precision
- efficiency of charge collection and noise signals
- the stability of the device and its radiation hardness
- Performance optimisation requires the simultaneous consideration of the geometrical parameters of the sensor and the associated electronics:
 - p or n bulk silicon
 - resistivity
 - thickness
 - strip pitch and read-out pitch
 - single or double side
 - type of biasing structure
 - AC or DC coupling

Examples of sensor design - CMS sensors (2)

- Compact Muon Solenoid (CMS)
 - Future exp. at LHC CERN
 - World largest Silicon Strip Tracker
- Silicon Strip Tracker of CMS
 - ~ 25000 single-sided micro-strip silicon sensors (210 m²)

Radiation environment

- • $\Phi \approx 1.6 \text{x} 10^{14} \text{ n/cm}^2$
- •This governs choice of many parameters of the silicon sensors

Crystal properties

- n-type silicon
- < < 100> orientation
- flatness < 100µm
- 320±20μm;1.5÷3.0 kΩ cm
- 500 \pm 20µm;3.5 \div 7.5 k Ω cm

Sensor characteristics

single sided
strips p⁺ implanted

width/pitch ≈ 0.25

AC coupled
metal overhang 4÷8 μm
poly-silicon biased
bias-ring
guard-ring
n⁺ along the edge

Examples of sensor design - AMS sensors (3)

- Alpha Magnetic Spectrometer (AMS)
 - Exp. programmed to operate on the International Space Station from 2005 for at least three years
 - The biggest silicon tracker even flown in space
- Silicon Strip Tracker of AMS
 - ~ 3000 double-sided micro-strip silicon sensors
 - 8 planes (8 m²)

Sensor crystal properties

- n-type silicon (4" wafers)
- high resistivity (> 6 k Ω cm)
- <111> crystal orientation
- + 300±10 μm thickness

Sensor characteristics

- active area 7x4 cm²
- both sides processed by planar technology
- \bullet cut with very high precision (<5 $\mu m)$

• p-side

- 1284 p⁺ metallized strips (55 µm pitch)
- two p⁺ guard-rings GR (70 μm wide)
- punch-through biasing (inner GR at 5 μm from the strips end)
- n-side
- 384 n⁺ strips perpendicular to the p⁺ strips on the opposite side (110 μm pitch)
- **p**⁺ blocking strips surround each **n**⁺ strip
- single guard-ring GR (500 µm wide)
- surface-through biasing

Electrical characterization (1)

- Efficient charge collection in a tracking detector
 - The signal given by a minimum ionizing particle must be much higher than the noise at the input of the read-out electronics
 - \Rightarrow All noise sources must be minimized
- Noise sources in a tracking detector derive from all components of electronic chain:
 - Silicon sensor
 - Read-out electronics
 - Electrical network
- The most important sources of noise occur near the beginning of the signal, where the signal is at a minimum
 - noise generated at this point undergoes the same amplification as the signal
 - noise generated further along the chain is usually much smaller than the signal

⇒The noise sources derived from the silicon micro-strip sensor (connected to its electrical properties) represent an important contribution to the electronic noise and must be carefully analyzed

Electrical characterization (2)

- Accurate electrical characterization of all electrical parameters of silicon sensors with contributions to the electronic noise must be performed prior final assembly of the sensors:
 - Leakage currents for every strip Iss for the current shot-noise
 - ENC $\propto \sqrt{I_{ee}}$
 - Poly-silicon resistance (polysilicon resistor biasing)
 - for the thermal noise Resistance to the bias-ring (punch-through biasing)
 - ENC $\propto \sqrt{(kT/R)}$
 - Coupling capacitance (for AC coupled sensors) for the capacitive load C_d
 - Interstrip capacitance

• ENC $\propto C_d$

Interstrip resistance for the DC electrical isolation

Electrical characterization - hardware set-up (3)

Main characteristics of the hardware system for electrical characterization of silicon micro-strip sensors:

- At least 10% accuracy for:
 - Current levels ranging from O(100pA) to O(10mA)
 - Resistances of $O(G\Omega)$ to $O(T\Omega)$
 - Capacitances down to O(pF)
- Reproducible results immediately interpretable
- Automated for fast quality control of a large number of sensors in short time
- Measurements performed in a clean-room:
 - purity class 10000 or less
 - controlled temperature (21±1°C) and humidity (35±5% RH)

Electrical characterization - example of hardware set-up (4)

Electrical characterization - hardware set-up (5)

Electrical characterization - hardware set-up (6)

Detailed view of chuck

Electrical characterization - hardware set-up (7)

Keithley 230 Voltage Source

Voltage source: ± 100 mV to ± 100 V

Keithley 590 CV Meter

Frequency range: 100 kHz, 1 MHz Capacimeter sensibility: 1 fF Internal bias source: ± 20 V Applied external bias source: ± 200 V

Agilent 4284 LCR Meter-

Frequency range: 20 Hz, 1 MHz Capacimeter sensibility: 1 fF Bias source: ± 40 V

Keithley IV 236

-Keithley IV 237

Additional capabilities Source or measure up to \pm 1100 V at \pm 10 mA maximum

Keithley 707 Switching Matrix

Matrix 8 (lines) x 72 (columns) lines (A÷H) - instruments columns (1+72) – needless of the probecard

• Triaxial cables with guarded shielding

Electrical characterization - electrical parameters (8)

> Over-depleted mode operation

 across the sensor is applied an reversed bias voltage usually 1.5 or 2 times higher then depletion voltage

Depletion voltage V_{dep}

- space charge region extends through the full wafer thickness
- property of the n-type crystal (depends of the bulk resistivity ρ_n of the crystal)
- determined by measuring the bulk capacitance C_b versus reverse bias voltage V_{bias} between the p⁺ bias-ring and the n⁺ back-plane of the sensors

Nicoleta DINU

Electrical characterization - electrical parameters (9)

- Depletion voltage V_{dep}
 - extracted from the fit of the knee
 in the plot 1/C_b² versus V_{bias}

Depletion voltage values:

- CMS sensors: V_{dep} = 100 ÷ 300 V ⇒ V_{operation} = 400 V
- AMS sensors: $V_{dep} = 20 \div 50 V ⇒ V_{operation} = 80 V$

Electrical characterization - electrical parameters (10)

- Total leakage current I_{tot}
- Main sources of (unwanted) current flow:
 - Diffusion current
 - charges generated in the un-depleted zone adjacent to the depletion zone which diffuse into the depletion zone (otherwise they would quickly recombine)
 - should be negligible
 - Generation current
 - charge generated in the depletion zone by defects or contaminants
 - $J_g \propto exp(-b/kT)$ exponential dependence of temperature
 - rate determined by nature and concentration of defects
 - <u>major contribution</u>

Surface leakage currents

- Take place at the edges of the sensor
- n-type implants put around edge of the device and a proper distance maintained between p bias ring and edge ring
- External guard-ring assures continuous potential drop over the edge

Electrical characterization - electrical parameters (11)

Total leakage current I_{tot}

- measured between the p⁺ bias-ring and the n⁺ back-plane of the sensor
- for the case of large number of sensors certification, total leakage current is a <u>fairly good indicator of imperfections</u> (the net current measured is the sum with the signs of all the contributions mentioned before)

- Usually, all the strips are resistively connected to the bias-ring
- I_{tot} the sum of single-strip leakage currents contributions

Electrical characterization - electrical parameters (12)

- Single strip leakage current I_{ss}
- Measured to find local defects due to:
 - fabrication process defects (small imperfections in the masks)
 - manipulation damages from dicing and transport (chipping, scratches)
- > If I_{ss} > critical limit
 - \Rightarrow channel is noisy and inefficient
- Limited no. of noisy channels are allowed

I_{ss} measurement set-up for

single-sided AC coupled poly-silicon resistor biased sensor

- \succ I_{ss} values:
 - CMS sensors: I_{ss} < 100 nA @ 400 V</p>

Electrical characterization - electrical parameters (13)

Single strip leakage current I_{ss}

Electrical characterization - electrical parameters (14)

Single strip leakage current I_{ss}

Electrical characterization - electrical parameters (15)

Poly-silicon resistor R_{poly}

(for poly-silicon biasing structure)

- bias resistor source of thermal noise
- obtained by doping (implantation or diffusion) of non-single crystal (poly) silicon between the metal line of the bias-ring and the p⁺ strip
- desired resistance is obtained varying the length to width aspect ratio during processing

Keithley IV 236

Prob $CMS sensors: R_{poly} = 1.5 \pm 0.3 \text{ M}\Omega @ 400 \text{ V}$

R_{poly} measurement set-up for single-sided AC coupled poly-silicon resistor biased sensor

Probe to n⁺ back-plane

Keithley IV 237

Lo

Hi

Fermi National Accelerator Laboratory, 27 May 2003

Electrical characterization - electrical parameters (16)

Electrical characterization - electrical parameters (17)

Coupling capacitance C_{ac}

- (for AC coupled sensor)
- given by a capacitor made by a sandwich of aluminium strip over oxide layer over p-strip
- depends on the geometry of the strips, length and the width of the implantation and aluminization
- C_{ac} measurement monitors the uniformity of the oxide layer Sensor
- gives confidence about the resulting homogeneity in charge collection

\succ C_{ac} values:

CMS sensors: C_{ac} > 1.2pF/cm per μm of implanted strip width

single-sided AC coupled poly-silicon resistor biased sensor (allows determination of Al-Al or p⁺-p⁺ shorts)

Electrical characterization - electrical parameters (18)

Sensor

Current through dielectric layer I_{diel}

(for AC coupled sensor)

- oxide thickness of 0.1÷0.2 μm is usually required
- difficult to make perfect oxide insulator over large surface of the sensor
- most common defects are called
 "pinholes", representing a short (or low resistivity connection) through the oxide

- Idiel measurement puts in evidence the pinholes
- good capacitor I_{diel} equals the noise of the set-up (in the order of pA)
- pinhole I_{diel} exceeds a certain values (e.g. 1 nA)

single-sided AC coupled poly-silicon resistor biased sensor

I_{diel} measurement set-up for

Probe to n⁺ back-plane

Hi

Lo

Electrical characterization - electrical parameters (19)

- Interstrip capacitance C_{interstrip}
 - Depends on the geometry of the strips, length and the width of the implantation and aluminization

set-up for C_{interstrip} measurement for double-sided DC coupled punch-through biased sensor

Electrical characterization - electrical parameters (20)

 Interstrip resistance R_{interstrip}
 optimized through fabrication process and geometric dimensions of implantation

set-up for R_{interstrip} measurement for double-sided DC coupled punch-through biased sensor

Nicoleta DINU

Fermi National Accelerator Laboratory, 27 May 2003

Electrical characterization - characteristic defects (22)

Cumulative distributions of I_{ss} at 80 V for ~ 1500 AMS production sensors before and after dicing

Correlation of p- and n-side HS number for each AMS production sensor after dicing (~ 1500 units)

Nicoleta DINU

Fermi National Accelerator Laboratory, 27 May 2003

Nr. strip

Electrical characterization - characteristic defects (23)

- Small fraction of sensors (~10%) with HS no. >> threshold
- surface chemical contamination produced during dicing and transport
- Removing few Å from passivation oxide by a wet etching procedure, the I_{ss} of the corresponding HS decreased to normal values for 70% of the sensors

- Stringent conditions imposed on dicing procedure and transport:
 - UV adhesive tape for dicing
 - ✓ during and after dicing, rinsing with a shower of low-res. de-ionized H₂O (1÷2 MΩ x cm)
 - drying with hyper-pure N₂ flow and special clean-room tissues
 - package each sensor in small special box, covered by special clean-room tissue and fixed by two pieces of antistatic sponge
 - These conditions eliminated the surface contamination

Conclusions

Electrical characterization of silicon micro-strip silicon sensors has been presented

- General considerations on hardware set-up
- Description of all parameters with contribution to the noise at the input of the read-out electronics
 - Leakage currents
 - Poly-silicon resistance (polysilicon resistor biasing)
 - Resistance to the bias-ring (punch-through biasing)
 - Coupling capacitance and dielectric current (for AC coupled sensors)
 - Interstrip capacitance
 - Interstrip resistance
- Characteristic defects detected during electrical characterization have been shown (produced during dicing and transport)
 - Surface chemical contamination (70% of the sensors cured by wet etching procedure)