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� A brief CV
� Faculty of Physics, Nuclear Physics Section, Bucharest, Romania

� Scholarship at National Institute of Nuclear Physics (INFN), Perugia Univ., Italy
• Worked on electrical characterization of silicon micro-strip sensors for the AMS01 and 

the CMS experiments

� PhD. at Institute of Physics and Nuclear Engineering – Horia Hulubei, Bucharest, 
Romania

• Thesis: “Modifications of crystals properties using stable and radioactive ion beams”
• Worked at Joint Institute of Nuclear Research (JINR), Laboratory of Nuclear 

Reactions/Center of Applied Physics, Dubna; studies of the effect of heavy ion 
irradiation on distribution and electrically activity of boron in silicon

� Post-doc at INFN, Perugia Univ., Italy
• Worked on studies of electrical properties of silicon micro-strip silicon sensors for the 

CMS and the AMS02  experiments

� Senior researcher III, Institute of Space Sciences, Laboratory of Space 
Researches, Bucharest, Romania
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� Physicists always wanted to understand the fundamental laws of nature

� Astrophysics and particle accelerators – go “hand in hand” to find answers to 
unsolved physics problems
� Astrophysics

• Cosmic rays (Hess, 1912) – natural source for very high energy particles 
• e+, µ+, µ-, π+, π -, K, Λ, Σ, Ξ- - first elementary particles discovered before the advent of 

particle accelerators
� Particle accelerators

• First particle accelerators (~ 1950) – allowed more systematic studies using artificial 
particles

• The great advantage - the beams could be produced with known energies and directed 
precisely onto the target

� Determination of particle trajectories – basic requirement in astrophysics and particle 
accelerator fields

� Silicon tracking systems – high precision tracking devices for measuring of particle 
parameters
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� Challenging features of silicon tracking detectors:
☺ High spatial resolution
☺ Compactness in size
☺ Very fast response time
☺ Low power consumption
☺ Good operation in vacuum and strong magnetic fields
☺ High radiation hardness

� Large usage in high radiation environments in particle accelerator experiments:
� Fixed target experiments:

• HERA-B, HERMES, COMPAS and others.
� Collider experiments:

• CDF, D0, BTeV at Tevatron p-antiproton collider – FNAL;
• CMS, LHCb, ATLAS and ALICE at LHC p-p collider – CERN;
• STAR, PHENIX, PHOBOS, BRAHMS at RHIC heavy ion collider;
• BABAR, BELLE, CLEO at B-factory colliders;
• H1 and ZEUS at HERA e-p collider.

� Large usage in space experiments:
• AMS, GLAST, PAMELA, AGILE, NINA and others.
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� Particle detection efficiency and spatial resolution of the silicon tracking
detectors
� depend strongly on the electrical properties of their basic element: the silicon

sensor

� Electrical properties of the silicon sensors:
� contribute to the noise at the input of the read-out electronics
� influence the performances of the detector

� Very accurate electrical characterization have to be performed prior final
assembly of the silicon sensors
� to obtain the best possible signal-to-noise ratio
� to guarantee the quality of the measurements during all the data taking

period
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� Choosing of the sensor design must follow the physics requirements of 
desired experiment

� Important criteria for silicon micro-strip sensors design optimisation:
� position-measurement precision
� efficiency of charge collection and noise signals
� the stability of the device and its radiation hardness

� Performance optimisation requires the simultaneous consideration of the 
geometrical parameters of the sensor and the associated electronics:
� p or n bulk silicon
� resistivity
� thickness
� strip pitch and read-out pitch
� single or double side
� type of biasing structure
� AC or DC coupling
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Sensor characteristics
•single sided
•strips p+ implanted

�width/pitch ≈≈≈≈ 0.25
•AC coupled
•metal overhang 4÷÷÷÷8 µµµµm
•poly-silicon biased
•bias-ring
•guard-ring
•n+ along the edge

Crystal properties
• n-type silicon 
• <100> orientation
• flatness < 100µµµµm
• 320±±±±20µµµµm;1.5÷÷÷÷3.0 kΩΩΩΩ cm
• 500±±±±20µµµµm;3.5÷÷÷÷7.5 kΩΩΩΩ cm

Radiation environment
•Φ ≈ 1.6x1014 n/cm2

•This governs choice of many 
parameters of the silicon sensors

� Compact Muon Solenoid (CMS)
� Future exp. at LHC - CERN
� World largest Silicon Strip Tracker

� Silicon Strip Tracker of CMS
� ∼ 25000 single-sided micro-strip silicon sensors (210 m2)
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� Alpha Magnetic Spectrometer (AMS)
� Exp. programmed to operate on the International Space Station from 2005 for at least three

years
� The biggest silicon tracker even flown in space

� Silicon Strip Tracker of AMS
� ∼ 3000 double-sided micro-strip silicon sensors
� 8 planes (8 m2)

Sensor crystal properties
• n-type silicon (4” wafers) 
• high resistivity (> 6 kΩΩΩΩ cm)
• <111> crystal orientation
• 300±±±±10 µµµµm thickness

Sensor characteristics
• active area 7x4 cm2

• both sides processed by planar technology
• cut with very high precision (<5 µµµµm)
• p-side
• 1284 p+ metallized strips (55 µµµµm pitch)
• two p+ guard-rings GR (70 µµµµm wide)
• punch-through biasing (inner GR at 

5 µµµµm from the strips end)
• n-side
• 384 n+ strips perpendicular to the p+

strips on the opposite side (110 µµµµm pitch)
• p+ blocking strips surround each n+ strip
• single guard-ring GR (500 µµµµm wide)
• surface-through biasing
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� Efficient charge collection in a tracking detector
� The signal given by a minimum ionizing particle must be much higher than the

noise at the input of the read-out electronics
⇒ All noise sources must be minimized

� Noise sources in a tracking detector derive from all components of 
electronic chain:
� Silicon sensor
� Read-out electronics

� Electrical network

� The most important sources of noise occur near the beginning of the signal, 
where the signal is at a minimum
� noise generated at this point undergoes the same amplification as the signal
� noise generated further along the chain is usually much smaller than the signal

⇒The noise sources derived from the silicon micro-strip sensor (connected
to its electrical properties) represent an important contribution to the
electronic noise and must be carefully analyzed
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� Accurate electrical characterization of all electrical parameters of silicon 
sensors with contributions to the electronic noise must be performed prior 
final assembly of the sensors:
� Leakage currents for every strip Iss for the current shot-noise

• ENC ∝∝∝∝ √√√√I ss

� Poly-silicon resistance (polysilicon resistor biasing)
� Resistance to the bias-ring (punch-through biasing)

• ENC ∝∝∝∝ √√√√(kT/R)

� Coupling capacitance (for AC coupled sensors)
� Interstrip capacitance

• ENC ∝∝∝∝ Cd

� Interstrip resistance for the DC electrical isolation

for the thermal noise

for the capacitive load Cd
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� Main characteristics of the hardware system for electrical
characterization of silicon micro-strip sensors:
�At least 10% accuracy for:

• Current levels ranging from O(100pA) to O(10mA)
• Resistances of O(GΩ) to O(TΩ)
• Capacitances down to O(pF)

�Reproducible results immediately interpretable
�Automated for fast quality control of a large number of sensors in short

time
�Measurements performed in a clean-room:

• purity class 10000 or less
• controlled temperature (21±1ºC) and humidity (35±5% RH)



Fermi National Accelerator Laboratory, 27 May 2003 13Nicoleta DINU

cables

GPIB Serial port

PA 200 Karl Suss test stationElectrical instruments
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Microscope

Probe
Card

(58 probes)

Chuck
Sensor on pneumatic arm

Storage 
Cassette

(25 sensors)

Video
camera

Faraday
cup
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Vacuum circuits

Mobile clampsAlignment pins

Detailed view of chuck
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Keithley 230 Voltage Source
Voltage source: ±±±± 100mV to ±±±± 100 V 

Keithley IV 236 
Source V: ±±±± 100 µµµµV to ±±±± 110 V 
Measure I: ±±±± 10 fA to ±±±± 100 mA
Source I: ±±±± 100 fA to ±±±± 100 mA
Measure V: ±±±± 10 µµµµV to ±±±± 110V

Keithley IV 237 
Additional capabilities
Source or measure up to ±±±± 1100 V
at ±±±± 10 mA maximum

Keithley 590 CV Meter
Frequency range: 100 kHz, 1 MHz
Capacimeter sensibility: 1 fF
Internal bias source: ±±±± 20 V
Applied external bias source: ±±±± 200 V

Agilent 4284 LCR Meter
Frequency range: 20 Hz, 1 MHz
Capacimeter sensibility: 1 fF
Bias source: ±±±± 40 V

Keithley 707 
Switching Matrix
Matrix 8 (lines) x 72 (columns)
lines (A÷÷÷÷H) - instruments
columns (1÷÷÷÷72) – needless of the probe-
card 

• Triaxial cables with 
guarded shielding
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� Depletion voltage Vdep
� space charge region extends 

through the full wafer thickness
� property of the n-type crystal 

(depends of the bulk resistivity ρn
of the crystal)

� determined by measuring the bulk 
capacitance Cb versus reverse  
bias voltage Vbias between the p+

bias-ring and the n+ back-plane of 
the sensors

Probe to p+ bias-ring
Hi

Probe to n+ back-plane

Sensor

Hi Lo

Voltage source
Keithley IV 237

LCR Meter
Agilent 4284A

� Over-depleted mode operation
� across the sensor is applied an 

reversed bias voltage usually 1.5 
or 2 times higher then depletion 
voltage
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� Depletion voltage Vdep
� extracted from the fit of the knee 

in the plot 1/Cb
2 versus Vbias
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� Depletion voltage values:
� CMS sensors: Vdep = 100 ÷ 300 V ⇒ Voperation = 400 V
� AMS sensors: Vdep = 20 ÷ 50 V ⇒ Voperation = 80 V
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� Total leakage current Itot

� Main sources of (unwanted) current flow:
� Diffusion current

• charges generated in the un-depleted zone adjacent to the depletion zone which 
diffuse into the depletion zone (otherwise they would quickly recombine)

• should be negligible

� Generation current 
• charge generated in the depletion zone by defects or contaminants
• Jg ∝∝∝∝ exp(-b/kT) – exponential dependence of temperature

• rate determined by nature and concentration of defects
• major contribution

� Surface leakage currents
• Take place at the edges of the sensor
• n-type implants put around edge of the 

device and a proper distance maintained 
between p bias ring and edge ring

• External guard-ring assures continuous 
potential drop over the edge

CMS sensor AMS sensor
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Probe to p+ bias-ring

Lo Hi

Probe to n+ back-plane

Sensor

Keithley IV 237

pA

� Total leakage current Itot

� measured between the p+ bias-ring and the n+ back-plane of the sensor 

� for the case of large number of sensors certification, total leakage current is a 
fairly good indicator of imperfections (the net current measured is the sum with the signs of 
all the contributions mentioned before)

� Itot values:
� CMS sensors: Itot < 12 µA @ 450 V
� AMS sensors: Itot < 2 µA @ 80 V

� Usually, all the strips are resistively connected to the bias-ring
� Itot – the sum of single-strip leakage currents contributions



Fermi National Accelerator Laboratory, 27 May 2003 21Nicoleta DINU

� Single strip leakage current Iss

� Measured to find local defects due 
to:
� fabrication process defects (small 

imperfections in the masks)
� manipulation damages from dicing 

and transport (chipping, 
scratches)

� If Iss > critical limit 
⇒ channel is noisy and inefficient

� Limited no. of noisy channels are 
allowed

Probe to p+ bias-ring

Hi Lo

Probe to n+ back-plane

Sensor
Voltage source
Keithley IV 237

DC pad

Keithley IV 236

Probe to DC pad
pA

Hi Lo

Iss measurement set-up for
single-sided AC coupled poly-silicon resistor biased sensor

� Iss values:
� CMS sensors: Iss < 100 nA @ 400 V
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� Single strip leakage current Iss

Probe to p+ bias-ring

Sensor

p-side

n-side

Keithley Vsource 230

Hi Lo

Probe to n+ bias-ring

Probe to measured  
p+ strips

Hi Lo

pA

Keithley IV 236

Hi Lo

Keithley CV 590

set-up for p-side Iss measurement for 
double-sided DC coupled punch-through biased sensor

(allows determination of Al-Al or p+-p+ shorts)

� Iss values:
� p-side, AMS sensors: Iss < 2 nA @ 80 V
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� Single strip leakage current Iss

Probe to n+ bias-ring

Sensor

n-side

p-side

Keithley Vsource 230

Hi Lo

Probe to p+ bias-ring

Probe to measured  
n+ strips

Hi Lo

pA

Keithley IV 236

Hi Lo

Keithley CV 590

set-up for n-side Iss measurement for 
double-sided DC coupled punch-through biased sensor

(allows determination of Al-Al or p+-p+ shorts)

� Iss values:
� n-side, AMS sensors: Iss < 20 nA @ 80 V
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� Poly-silicon resistor Rpoly

(for poly-silicon biasing structure)
� bias resistor - source of thermal noise
� obtained by doping (implantation or 

diffusion) of non-single crystal (poly) 
silicon between the metal line of the 
bias-ring and the p+ strip

� desired resistance is obtained varying
the length to width aspect ratio during
processing

Probe to p+ bias-ring

Hi Lo

Probe to n+ back-plane

Sensor
Voltage source
Keithley IV 237

DC pad

Keithley IV 236

Probe to DC pad
pA

Hi Lo

Rpoly measurement set-up for
single-sided AC coupled poly-silicon resistor biased sensor

� Rpoly values:
� CMS sensors: Rpoly = 1.5±0.3 MΩ @ 400 V
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� Resistance to the bias-ring Rguard-strip

(for punch-through biasing structure)
� source of thermal noise
� optimized through fabrication process

(sensor geometry, doping, bias voltage)
� allows uniform bias of all the strips

• p-side – punch-through
• n-side – surface-through

�RgsIss ≈ 2 Vdrop; Vdrop ∼ 2 V
Probe to p+ bias-ring

Probe to n+ bias-ring

Hi Lo

Keithley Vsource 230

Hi Lo

Keithley CV 590

Keithley IV 236

pA

Hi Lo

set-up for Rguard-strip measurement for 
double-sided DC coupled punch-through biased sensor
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set-up for Vdrop measurement for 
double-sided DC coupled punch-through biased sensor

Probe to p+ bias-ring

Probe to n+ bias-ring

Hi Lo

Keithley Vsource 230

Hi Lo

Keithley IV 236

A

� Voltage drop

� Resistance to the bias-ring Rguard-strip

(for punch-through biasing structure)
� source of thermal noise
� optimized through fabrication process

(sensor geometry, doping, bias voltage)
� allows uniform bias of all the strips

• p-side – punch-through
• n-side – surface-through

�RgsIss ≈ 2 Vdrop; Vdrop ∼ 2 V
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� Coupling capacitance Cac

(for AC coupled sensor)
� given by a capacitor made by a 

sandwich of aluminium strip over 
oxide layer over p-strip 

� depends on the geometry of the 
strips, length and the width of the 
implantation and aluminization Probe to p+ bias-ring

Hi Lo

Probe to n+ back-plane

Sensor

Keithley IV 237
DC pads

AC pads

Hi

Lo

LCR Meter
Agilent 4284A

Cac measurement set-up for
single-sided AC coupled poly-silicon resistor biased sensor

(allows determination of Al-Al or p+-p+ shorts)

� Cac measurement - monitors the 
uniformity of the oxide layer

� gives confidence about the 
resulting homogeneity in charge 
collection 

� Cac values:
� CMS sensors: Cac > 1.2pF/cm per  µm of 

implanted strip width
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� Current through dielectric layer Idiel

(for AC coupled sensor)
� oxide thickness of 0.1÷0.2 µm is 

usually required
� difficult to make perfect oxide insulator 

over large surface of the sensor
� most common defects are called 

“pinholes” , representing a short (or 
low resistivity connection) through the 
oxide

Probe to p+ bias-ring

Probe to n+ back-plane

Sensor

Hi Lo

Keithley IV 237
DC pads

AC pads

pA

Hi Lo

Keithley IV 236

Hi Lo

Keithley Vsource 230

Idiel measurement set-up for
single-sided AC coupled poly-silicon resistor biased sensor

� Idiel measurement - puts in evidence 
the pinholes

� good capacitor - Idiel equals the noise 
of the set-up (in the order of pA)

� pinhole - Idiel exceeds a certain values 
(e.g. 1 nA)
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� Interstrip capacitance Cinterstrip
� Depends on the geometry of the 

strips, length and the width of the 
implantation and aluminization

Probe to p+ bias-ring

Probe to n+ bias-ring

Hi Lo

Keithley Vsource 230

Hi Lo

Keithley CV 590

set-up for Cinterstrip measurement for 
double-sided DC coupled punch-through biased sensor
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� Interstrip resistance Rinterstrip
� optimized through fabrication 

process and geometric dimensions 
of implantation

Probe to p+ bias-ring

Probe to n+ bias-ring

Hi Lo

Keithley Vsource 230

Hi Lo

Keithley CV 590

Keithley IV 236

pA

Hi Lo

set-up for Rinterstrip measurement for 
double-sided DC coupled punch-through biased sensor
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∼ 99% of the sensors satisfied 
the Itot acceptance criteria

Only ∼ 90% of the sensors confirm the
supposition that Itot can be interpreted
as the sum of Iss contributions
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� Removing few Å from passivation oxide by a
wet etching procedure, the Iss of the
corresponding HS decreased to normal
values for 70% of the sensors

� surface chemical contamination produced
during dicing and transport
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� Stringent conditions imposed on dicing
procedure and transport:
� UV adhesive tape for dicing
� during and after dicing, rinsing with a

shower of low-res. de-ionized H2O (1÷2
MΩ x cm)

� drying with hyper-pure N2 flow and
special clean-room tissues

� package – each sensor in small special
box, covered by special clean-room
tissue and fixed by two pieces of anti-
static sponge

� These conditions eliminated the
surface contamination

� Small fraction of sensors (∼10%) with HS no.
>> threshold

� Removing few Å from passivation oxide by a
wet etching procedure, the Iss of the
corresponding HS decreased to normal
values for 70% of the sensors

� surface chemical contamination produced
during dicing and transport

Hot strips
before etching

after etching
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� Electrical characterization of silicon micro-strip silicon sensors has been 
presented
� General considerations on hardware set-up
� Description of all parameters with contribution to the noise at the input of the 

read-out electronics
• Leakage currents 
• Poly-silicon resistance (polysilicon resistor biasing)
• Resistance to the bias-ring (punch-through biasing)
• Coupling capacitance and dielectric current (for AC coupled sensors)
• Interstrip capacitance
• Interstrip resistance

� Characteristic defects detected during electrical characterization have been 
shown (produced during dicing and transport)
� Surface chemical contamination (70% of the sensors cured by wet etching 

procedure)


