
Arduino Air Drums

Aman Sohane

Chinmay Khandekar

Paritosh Meihar

Overview

Many people want to become a drummer. Particularly because they are awesome, stylish and

rocking. But most of them cannot fulfill their dream. Maybe because drum sets are too expensive or

maybe some of them just want to have an experience of drumming. We can help them out with our

drumming kit. Here we present a really cool drum kit that has a special twist. "NO DRUMS at all".

Yes. It can be played in air.

We are using Arduino Uno, some MIDI devices,USB cables and other electronics devices for

constructing our drum kit. We know its not going to challenge the true drummers and their drum set

but we are sure all those who want to be a drummer would love to get their hand on our "Arduino

Air Drums"

Hardware

The hardware consists of arduino micro-controller, two axis accelerometer, a chappal and 2 PCBs.

We also use laptop with serial to MIDI converter and MIDI software to generate sounds.

Accelerometer

MMA6361L is a Two axis Low-g accelerometer Module which gives selectable acceleration

range from ±1.5g or ±6g.

Pin Pin Name Description

 1 XOUT X direction output Voltage
 2 YOUT Y direction output Voltage
 4 Vss Supply Ground
 5 Vdd 3.3V supply voltage
 6 Sleep (Active Low) Logic input pin to enable product or sleep

mode
 8 g-select Logic input pin to select g level

Pins 3,7,9,10 are not connected. The g-select feature allows to select between two sensitivities

800mV/g (logic 0) and 206mv/g (logic 1). We are using 800mv/g sensitivity so that pin 8 is connected

to pin 4 (Supply Ground). Pin 6 is just to select normal mode of operation in which it consumes

400uA current . It is connected Vcc (pin 5).

Software

We are using Serial to MIDi converter to “DECODE” the message sent by arduino and then using any

MIDI player to play the beat.The Serial to Midi converter is an application written in processing

environment which monitors the data received on serial port and gives process it. Also a virtual

route is required to map the output port of Serial to MIDI converter and input of MIDI player. We

used LoopBe for the purpose.

Working

Our drums kit has 3 parts:

1. Snare

2. Hi-hat

3. Bass

Snare and Hi-hat

For snare and hi-hat, we use accelerometers so that they can be played in air. As can be seen from

the picture, we have made two sticks for snare and hi-hat. The Y-output of snare accelerometer goes

to analog pin 0 and Y-output of hi-hat snare accelerometer to analog pin 1 of Arduino. This output

can be observed on serial monitor as decimal values from 0 to 1023. When stick stops midway in the

air (condition of “hit” is met) , it gives extreme value because of infinite resistance and on the serial

monitor we get zero or very small value of voltage (by small we mean less than 100 on serial

monitor). Usually when accelerometer is kept steady, it gives value around 380 on serial monitor.

And when we are moving it in one particular direction with increasing velocity it gives value around

600. So when it experiences transition, it suddenly drops from this value to 0. When this transition id

detected we set ‘activepad’ HIGH and we send a MIDI signal through serial to computer. Serial to

MIDI converter software converts this serial value to MIDI value which is used by a virtual MIDI

device which generated corresponding beat.

It is possible that arduino might detect more no. of zeros during transition because it takes around

300uS between 2 consecutive readings as observed on serial monitor. So we consider only the first

zero and neglect next few values. This is explained in code.

Bass

We observed once during a lab session that when arduino’s input pin is kept floating , it becomes

HIGH when it is touched by some conducting material. So we use this trick to detect a bass hit.

The Code.

//AIR DRUMS

//Aman Sohane

//Chinmay Khandekar

//Paritosh Meihar

unsigned char PadNote[3] = {52,100,10}; // MIDI notes from 0 to 127 (Mid C = 60)

int PadCutOff[3] = {50,50,0}; // condition to cause a drum hit

int MaxPlayTime[3] = {10,10,10}; // Cycles before a 2nd hit is allowed

#define midichannel 0; // MIDI channel

boolean VelocityFlag = true;// Velocity ON (true) or OFF (false)

// Internal Use Variables

boolean activePad[3] = {0,0,0}; // Array of flags of pad currently playing

int PinPlayTime[3] = {0,0,0}; // Counter since pad started to play

unsigned char status;

int pin = 0;

int hitavg = 0;

// Setup

void setup()

{

 Serial.begin(9600); // connect to the serial port 115200

}

// Main Program

void loop()

{

 for(int pin=0; pin < 2; pin++)

 {

 hitavg = analogRead(pin); // read the input pin

 // Serial.println((hitavg));

 if(hitavg <=PadCutOff[pin]) //compare to threshold

 {

 if((activePad[pin] == false)) //giving beat for firt time

 {

 MIDI_TX(144,PadNote[pin],127); //send midi value through serial

 PinPlayTime[pin] = 0; //counting time to give a minimum time

differencebetween two beats of same instrument

 activePad[pin] = true; //set flag high that this instrument is played once

 }

 else

 {

 PinPlayTime[pin] = PinPlayTime[pin] + 1; //if the flag is high just increment the counter

 }

 }

 else if((activePad[pin] == true)) //increment the counter otherwise even if threshold

condition is not met

 {

 PinPlayTime[pin] = PinPlayTime[pin] + 1;

 if(PinPlayTime[pin] > MaxPlayTime[pin]) //if the counter exceeds given time difference

between two beats then set flag low and send note off the signal.

 {

 activePad[pin] = false;

 MIDI_TX(128,PadNote[pin],127);

 }

 }

 }

}

// Transmit MIDI Message

void MIDI_TX(unsigned char MESSAGE, unsigned char PITCH, unsigned char VELOCITY)

{

 status = MESSAGE + midichannel;

 Serial.print(status);

 Serial.print(PITCH);

 Serial.print(VELOCITY);

}

Problems

Since we are using two axis accelerometers , we can detect both X-output and Y-output transitions

and produce corresponding 2 beats using MIDI e.g. Hi-hat for X-output transition and Crash for Y-

output transition. However the accelerometer is so sensitive that when we move it in 1 particular

direction and detect a zero, it also gives zero for perpendicular direction output of accelerometer.

Hence both the beats are played simultaneously. This can be solved by noting down the threshold

for both directions so that arduino sends only 1 serial signal.

Further Improvements

We can try to play 2 beats using only 1 stick as described above.

Also external casing can be improved and made more presentable.

Resources and Links

 For reference to MIDI protocol http://en.wikipedia.org/wiki/MIDI

 http://www.geek.com/articles/geek-cetera/arduino-air-drums-made-from-garden-forks-

and-flip-flops-20110729/

 http://www.arduino.cc/playground/Interfacing/Processing

 Serial to MIDI converter -http://spikenzielabs.com/SpikenzieLabs/Serial_MIDI.html

 LoopBe-http://nerds.de/en/loopbe1.html

http://en.wikipedia.org/wiki/MIDI
http://www.geek.com/articles/geek-cetera/arduino-air-drums-made-from-garden-forks-and-flip-flops-20110729/
http://www.geek.com/articles/geek-cetera/arduino-air-drums-made-from-garden-forks-and-flip-flops-20110729/
http://www.arduino.cc/playground/Interfacing/Processing
http://spikenzielabs.com/SpikenzieLabs/Serial_MIDI.html
http://nerds.de/en/loopbe1.html

