
Voice Based Speaker Identification

Rahul Sharma (09D26008)
Prashant Srivastava (09D01021)

Saurabh Gandhi (09026012)

Objective:

The idea was to identify a speaker based on the sound of his/her speech

Theory:

A few key terms would be used, such as a vowel, and the Fast Fourier 
Transform of the speech sound would be obtained. Then the frequency will be 
mapped onto a  scale which is most apt for human voice recognition. This frequency 
scale is called a mel or a melody scale. The relation for converting FFT to mel scale 
is:

m=2595 log(1+f /700)

Once we get the mel frequency components, we calculate mel frequency 
cepstral  coefficients or MFCCs. A cepstrum is the result of taking the Fast Fourier 
Transform (FFT) of the logarithm of the spectrum of a signal.In sound processing, the 
mel-frequency cepstrum (MFC) is a representation of the short-term power 
spectrum of a sound, based on a linear cosine transform of a log power spectrum on a 
nonlinear mel scale of frequency.The difference between the cepstrum and the mel-
frequency cepstrum is that in the MFC, the frequency bands are equally spaced on the 
mel scale, which approximates the human auditory system's response more closely 
than the linearly-spaced frequency bands used in the normal cepstrum.  

The MFCC algorithm returns a feature extracted  from the power spectrum of 
the mel frequency. This feature can be compared directly or if the  size is large, vector 
clustering can be performed on it using algorithms such as the k-means algorithm and 
then compared. For comparision, we compute the euclidean distance between the 
template vectors and the voice closest to the stored template is returned. Thresholding 
may be performed for giving specific positive/negative result.



Ideal  Implementation:

Electronics :

 We used a microphone to capture the sound and a two stage amplifier and 
filter to enhace the signal. 



Programming:

We  used a MATLAB open source toolbox called Voicebox for implementing 
the theory mentioned above. It takes a .wav file as  input. It then calculates the FFT, 
maps it onto the mel scale and then finds the MFCCs, using Hamming windows for 
sampling. Optimum sampling frequency of 16 kHz was used. The output vector was 
reduced in size by K-Means clustering. Finally the euclidean distance between the 
sample and previously stored templates was evaluated and a descision on whose 
voice is most closely resembled was reached.

This was to be implemented on the arduino.

Difficulties in Achieveing the goal:

Converting MATLAB code to C: C is  a very basic language. Main problem 
was that MATLAB uses many kind of data structures and its function operate on 
those structures. So to write an equivalent function was difficult even for the simplest 
of MATLAB functions. Despite these difficulties we partly converted  the code into C 
till we hit another roadblock!

Memory Limitations: It had extreme memory requirements and sometimes 
array sizes of around 50000 elements were required! So we decided to use external 
memory elements like EEPROM. We tried but were unable to get it to work. We 
realised after converting the code partially that even the code is going to be too big 
for arduino. We implemented an FFT algorithm on arduino. However, due to memory 
constraints we had to limit to a low resolution. 

Parts Implemented:

The signal was captured using ADC on the arduino board. Then a 16 point 
radix-4 FFT algorithm was used to obtain the fourier coefficients of the captured 
signal. Sampling was done according to the Nyquist criteria at 4 kHz (every 250 
microseconds). We got real and imaginary parts of  8 frequency components which 
were sampled in real time. We then calculated the normalised magnitude of all the 
frequency components and displayed it in the form of a histogram on serial monitor.

 Storage of tempelates on sd-card was also implemented but was not required 
since tempelates could not be generated due to above mentioned difficulties.

The MATLAB code, too, was partially converted to C, as mentioned above, but 
could not be used further.



Result:

We have managed to identify the relative magnitudes of audio signals  and 
display it graphically. This can be used directly as a guitar tuner, or in general, for 
identifying major frequency components in any signal. However, for applications 
requiring high resolution sampling and FFT (such as voice identification), this device 
cannot be used primarily due to size constraints.

Work Division:

Hardware:
Microphone pre-amplifier: All of us

Software:
Actual coding: All of us
FFT Algorithm: Prashant
MATLAB to C:  Rahul
SD-CARD: Saurabh

References:

• http://www.retroleum.co.uk/electronics-articles/basic-mmc-card-access/  
• http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html  
• http://www.mit.edu/~emin/source_code/fft/index.html  
• Digital Signal Processing, Proakis and Manakolav

http://www.retroleum.co.uk/electronics-articles/basic-mmc-card-access/
http://www.mit.edu/~emin/source_code/fft/index.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

