PHY-321

[3 points]

Instructions

- 1. This is a closed book exam. Total of 20 points.
- 2. Be clear; Be specific; Be neat.
- 3. Useful formulas are given at the end of the last question.

1.

Consider a three level single particle system with five microstates with energies 0, ϵ , ϵ , and 2ϵ . What is the mean energy of the system if it is equilibrium with a heat bath at temperature T?

2. Density of States in 1 and 2-dimensions [3 points]

In the case of 3 space dimensions, we saw that the density of states of a non-relativistic particle in \mathbf{k} -space is given by

$$g(k)dk = \frac{V}{2\pi^2}k^2dk \tag{1}$$

In the case of 1 and 2 space dimensions, what is the density of states in \mathbf{k} -space?

3. Root mean square fluctuations

A one-dimensional quantum harmonic oscillator (whose ground state energy is $\hbar\omega/2$) is in thermal equilibrium with a heat bath at temperature T.

- (a) What is the mean value of the oscillator's energy $\langle E \rangle$, as a function of temperature T? (1 point)
- (b) What is the value of ΔE , the root-mean-square fluctuation in energy about $\langle E \rangle$? (2 points)
- (c) How do $\langle E \rangle$ and ΔE behave in the limits $k_{B}T \ll \hbar \omega$ and $k_{B}T \gg \hbar \omega$? (1 point)

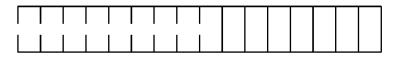
4. Modeling DNA

The unwinding of double-stranded DNA is like unzipping a zipper. The DNA has N links, each of them can be in one of two states: a closed state with energy 0 and an open state with energy Δ . A link can be in the open state only when all the links to its left are open (see the figure below)

1

[4 points]

[5 points]



(a) Show that the partition function of the DNA chain has a form 3 points

$$Z = \frac{1 - e^{-(N+1)\beta\Delta}}{1 - e^{-\Delta\beta}}$$
(2)

2 points (b) Find the average number of open links in $k_{_{B}}T \ll \Delta$ limit.

5. Cooling by adiabatic demagnetization

- (a) Consider N spin-1/2 spins in a magnetic field B. Initially, the system has a temperature T. If we slowly reduce the magnetic field to B/2, what is the corresponding temperature of the system? If we slowly reduce the magnetic field to zero, what is the temperature of the system? (Hint: this is an adiabatic process.) 2 points
- (b) Let us again consider N spin-1/2 spins in a magnetic field B. The spin system is in thermal contact with an ideal gas of N particles in a volume V. Initially, the two systems have a temperature T. Assume $\mu_B B \gg k_B T$. If we slowly reduce the magnetic field to zero, what is the temperature of the gas? **3 points**

Note: (i) The energy of the spins is $E = \mu_B B \sum_i S_i$.

(ii) The entropy of the ideal gas is

$$S_{\rm ideal} = N \, k_B \left(\frac{5}{2} + \ln \left[\frac{V}{N} \frac{1}{\lambda_D^3} \right] \right) \tag{3}$$

where λ_D is the thermal de Broglie wavelength.

Useful formulae

- 1. Stirling's approximation $\ln n! \simeq n \ln n n$
- 2. Useful constants: $k_{\scriptscriptstyle B} = 1.380650310^{-23}m^2 \, kg \, s^{-2} K^{-1};$ $\hbar = 1.05457148 \times 10^{-34} m^2 kg s^{-1}$
- 3.

$$\frac{1}{T} = \frac{\partial S}{\partial U}; \qquad \frac{P}{T} = \frac{\partial S}{\partial V}; \qquad C_V = \left. \frac{\partial U}{\partial T} \right|_{V,N}$$

 $\mathbf{2}$

[5 points]