# Indian Institute of Science Education and Research, Trivandrum 

PHY-321 Stat-Mech problem set 1
13.1.2015

Note: Deadline: 22 January 2015 (after the Stat-Mech Class)

1. Compressibility of a system $\kappa$ is defined to be the ratio of the fractional change of volume of a system to the applied pressure which causes that change. It is defined as

$$
\begin{equation*}
\kappa_{Y}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{Y, N} \tag{1}
\end{equation*}
$$

where $Y$ is the quantity held fixed during the application of the pressure and $N$ is the number of particles. For example, $Y$ can be temperature, in which case we obtain the isothermal compressibility or if it is entropy, this means isoentropic or adiabatic compressibility.
The coefficient of thermal expansion, $\alpha_{P}$ is defined to be the fractional change of volume per unit change of temperature, i. e.,

$$
\begin{equation*}
\alpha_{P}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P, N} \tag{2}
\end{equation*}
$$

(a) Show that, for an ideal gas

$$
\begin{equation*}
\kappa_{T}=\frac{1}{P} ; \quad \alpha_{P}=\frac{1}{T} \tag{3}
\end{equation*}
$$

(b) Show/verify that for a general system

$$
\begin{equation*}
\left(\frac{\partial C_{P}}{\partial P}\right)=-T V\left[\alpha_{P}^{2}+\left(\frac{\partial \alpha_{P}}{\partial T}\right)_{P}\right] \tag{4}
\end{equation*}
$$

(c) Use the above expression and the ideal gas equation of state, show that

$$
\begin{equation*}
\left(\frac{\partial C_{P}}{\partial P}\right)_{T, N}=0 \tag{5}
\end{equation*}
$$

2. Using the definition of specific heat capacities:

$$
\begin{equation*}
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, N} ; C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P, N} \tag{6}
\end{equation*}
$$

For a general thermodynamic system, show that
(a)

$$
\frac{C_{P}}{C_{V}}=\frac{\kappa_{T}}{\kappa_{S}}
$$

(b)

$$
C_{P}-C_{V}=\frac{T V \alpha_{P}^{2}}{\kappa_{T}}
$$

(c) Using the above two relations, show that

$$
\begin{equation*}
\kappa_{T}-\kappa_{S}=\frac{T V \alpha_{P}^{2}}{C_{P}} \tag{7}
\end{equation*}
$$

3. As was discussed in the class, entropy is maximum for an isolated system in equilibrium. Entropy and internal energy satisfy the following conditions:

$$
\begin{equation*}
d^{2} S \leq 0 ; d^{2} U \geq 0 \tag{8}
\end{equation*}
$$

These are called stability conditions for a system to be in equilibrium. The above condition is called concavity (convexity) property of entropy (internal energy). The above condition on internal energy leads to

$$
\begin{equation*}
\left(\frac{\partial T}{\partial S}\right)_{V}(d S)^{2}+2\left(\frac{\partial T}{\partial V}\right)_{S} d S d V-\left(\frac{\partial P}{\partial V}\right)_{S}(d V)^{2} \geq 0 \tag{9}
\end{equation*}
$$

Use this condition to show that
(a) $C_{V} \geq 0$
(b) $\kappa_{S} \geq 0, \kappa_{T} \geq 0$
(c) $C_{P} \geq C_{V}$
4. The van der Waals equation of state is given by

$$
\begin{equation*}
\left(P+\frac{a}{v^{2}}\right)(v-b)=k_{B} T \tag{10}
\end{equation*}
$$

where $v=V / N$. Show that this equation violates the stability condition $\kappa_{T} \geq 0$ for some values of $(P, V)$.
5. Gibbs-Dunhem relation Using Euler relation

$$
\begin{equation*}
U=T S-P V+\mu N \tag{11}
\end{equation*}
$$

and the first-law of thermodynamics

$$
\begin{equation*}
d U=T d S-P d V+\mu d N \tag{12}
\end{equation*}
$$

(a) obtain the following Gibbs-Dunhem relations

$$
\begin{align*}
& S d T-V d P+N d \mu=0  \tag{13}\\
& U d\left(\frac{1}{T}\right)+V d\left(\frac{P}{T}\right)-N d\left(\frac{\mu}{T}\right)=0 \tag{14}
\end{align*}
$$

(b) Using the equations of state of the ideal gas and relation (??)

$$
\begin{equation*}
P V=N k_{B} T \quad U=\frac{3}{2} N k_{B} T \tag{15}
\end{equation*}
$$

show that the entropy of ideal gas is

$$
\begin{equation*}
S=N k_{B}\left[\ln \left(\frac{U^{3 / 2} V}{N^{5 / 2}}\right)+\text { constant }\right] \tag{16}
\end{equation*}
$$

