Indian Institute of Science Education and Research, Trivandrum

PHY-321 Stat-Mech problem set $3 \quad$ 6.2.2015
Note: Deadline: 16 February 2015 (12:30 PM)

1. Using the microcanonical ensemble, compute the Helmholtz free energy $F(T, N)$ as a function of temperature for a system of N identical but distinguishable particles, each of which has two energy levels. Explore the limits $T \rightarrow 0$ and $T \rightarrow \infty$ of the energy, entropy and the occupation numbers.
2. Consider the system of N identical but distinguishable particles, each of which has two energy levels with energy 0 or $\epsilon>0$. The uppper energy level has a g-fold degeneracy while the ground state is non-degenerate. [g-fold degenerate states mean that the g number of energy states have the same energy level.] The total energy of the system is U.
(a) Using the microcanonical ensemble, find the occupation numbers n_{+} and n_{0} in terms of the system temperature. (n_{+}corresponds to the uppper level and n_{0} corresponds to the lower level.)
(b) Consider the case $g=2$. If the system energy $U=0.75 N \epsilon$ and is brought into contact with a bath at constant temperature $T=500 \mathrm{~K}$, in which direction does the heat flow?
3. A system of N three-level particles has a Hamiltonian of the form:

$$
\begin{equation*}
H=-h \sum_{i=1}^{N} S_{i} \quad S_{i}=1,0,-1 \tag{1}
\end{equation*}
$$

where h is positive constant. If n_{S} is the average number of particles in the state $S(S=1,0,-1)$, use the microcanonical ensemble to find the ratio n_{-1} / n_{1} in terms of the temperature in the limit of $N \rightarrow \infty$. Find the Helmholtz free energy.
4. A solid contains N mutually noninteracting nuclei of spin 1 . Each nucleus can therefore be any of the three quantum states labeled by the quantum number m, where $m=0, \pm 1$. Because of the electronic interactions with internal fields in the solid a nuceus in the state $m=1$ or in the state $m=-1$ have the same energy $\epsilon>0$, while its energy in the state $m=0$ has zero energy.
Derive the expression for the entropy of the N nuclei as a function of temperature T, and an expression for the heat capacity in the limit $\epsilon /\left(k_{B} T\right) \ll 1$.

