Chapter 5: Motion Under the Influence of a Central

 Force- Question: What is a central force?
- Answer: Any force which is directed towards a center, and depends only on the distance between the center and the particle in question.
- Question: Any examples of central forces in nature?
- Answer: Two fundamental forces of nature, gravitation, and Coulomb forces are central forces
- Question: But gravitation and Coulomb forces are two body forces, how could they be central?
- Answer: Correct, these two forces are indeed two-body forces, but they can be reduced to central forces by a mathematical trick.

Aim and Scope

- Kepler took the astronomical data of Tycho Brahe, and obtained three laws by clever mathematical fitting
- Law 1: Every planet moves in an elliptical orbit, with sun on one of its foci.
- Law 2: Position vector of the planet with respect to the sun, sweeps equal areas in equal times.
- Law 3: If T is the time for completing one revolution around sun, and A is the length of major axis of the ellipse, then $T^{2} \propto A^{3}$.
- We will be able to derive all these three laws based upon the mathematical theory we develop for central force motion

Reduction of a two-body central force problem to a one-body problem

- Gravitational force acting on mass m_{1} due to mass m_{2} is

$$
\mathbf{F}_{12}=-\frac{G m_{1} m_{2}}{r_{12}^{2}} \hat{\mathbf{r}}_{12}
$$

i.e., it acts along the line joining the two masses

- Similarly, the Coulomb force between two charges q_{1} and q_{2} is given by

$$
\mathbf{F}_{12}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}} \hat{\mathbf{r}}_{12}
$$

- An ideal central force is of the form

$$
\mathbf{F}(r)=f(r) \hat{\mathbf{r}},
$$

i.e., it is a one-body force depending on the coordinates of only the particle on which it acts

- But gravity and Coulomb forces are two-body forces, of the form

$$
\mathbf{F}\left(r_{12}\right)=f\left(r_{12}\right) \hat{\mathbf{r}}_{12}
$$

- Can they be reduced to a pure one-body form?
- Yes, and this is what we do next

Reduction of two-body problem...

- Relevant coordinates are shown in the figure

- We define

$$
\begin{aligned}
\mathbf{r} & =\mathbf{r}_{1}-\mathbf{r}_{2} \\
\Longrightarrow r & =|\mathbf{r}|=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|
\end{aligned}
$$

- Given $\mathbf{F}_{12}=f(r) \hat{\mathbf{r}}$, we have

$$
\begin{aligned}
& m_{1} \ddot{\mathbf{r}}_{1}=f(r) \hat{\mathbf{r}} \\
& m_{2} \ddot{\mathbf{r}}_{2}=-f(r) \hat{\mathbf{r}}
\end{aligned}
$$

- Both the equations above are coupled, because both depend upon \mathbf{r}_{1} and \mathbf{r}_{2}.
- In order to decouple them, we replace \mathbf{r}_{1} and \mathbf{r}_{2} by $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$ (called relative coordinate), and center of mass coordinate \mathbf{R}

$$
\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}
$$

- Now

$$
\begin{aligned}
\ddot{\mathbf{R}} & =\frac{m_{1} \ddot{\mathbf{r}}_{1}+m_{2} \ddot{\mathbf{r}}_{2}}{m_{1}+m_{2}}=\frac{f \hat{\mathbf{r}}-f \hat{\mathbf{r}}}{m_{1}+m_{2}}=0 \\
\Longrightarrow \mathbf{R} & =\mathbf{R}_{0}+\mathbf{V} t,
\end{aligned}
$$

above \mathbf{R}_{0} is the initial location of center of mass, and \mathbf{V} is the center of mass velocity.

- This equation physically means that the center of mass of this two-body system is moving with constant velocity, because there are no external forces on it.
- We also obtain

$$
\begin{aligned}
\ddot{\mathbf{r}}_{1}-\ddot{\mathbf{r}}_{2} & =f(r)\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \hat{\mathbf{r}} \\
\Longrightarrow \ddot{\mathbf{r}} & =\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}}\right) f(r) \hat{\mathbf{r}} \\
\mu \ddot{\mathbf{r}} & =f(r) \hat{\mathbf{r}},
\end{aligned}
$$

where $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$, is called reduced mass.

- Note that this final equation is entirely in terms of relative coordinate r
- It is an effective equation of motion for a single particle of mass μ, moving under the influence of force $f(r) \hat{r}$.
- There is just one coordinate (\mathbf{r}) involved in this equation of motion
- Thus the two body problem has been effectively reduced to a one-body problem
- This separation was possible only because the two-body force is central, i.e., along the line joining the two particles
- In order to solve this equation, we need to know the nature of the force, i.e., $f(r)$.
- We have already solved the equation of motion for the center-of-mass coordinate \mathbf{R}
- Therefore, once we solve the "reduced equation", we can obtain the complete solution by solving the two equations

$$
\begin{aligned}
\mathbf{R} & =\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}} \\
\mathbf{r} & =\mathbf{r}_{1}-\mathbf{r}_{2}
\end{aligned}
$$

- Leading to

$$
\begin{aligned}
& \mathbf{r}_{1}=\mathbf{R}+\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \mathbf{r} \\
& \mathbf{r}_{2}=\mathbf{R}-\left(\frac{m_{1}}{m_{1}+m_{2}}\right) \mathbf{r}
\end{aligned}
$$

- Next, we discuss how to approach the solution of the reduced equation

General Features of Central Force Motion

- Before attempting to solve $\mu \ddot{\mathbf{r}}=f(r) \hat{\mathbf{r}}$, we explore some general properties of central force motion
- Let $\mathbf{L}=\mathbf{r} \times \mathbf{p}$ be angular momentum corresponding to the relative motion
- Then clearly

$$
\frac{d \mathbf{L}}{d t}=\frac{d \mathbf{r}}{d t} \times \mathbf{p}+\mathbf{r} \times \frac{d \mathbf{p}}{d t}=\mathbf{v} \times \mathbf{p}+\mathbf{r} \times \mathbf{F}
$$

- But \mathbf{v} and $\mathbf{p}=\mu \mathbf{v}$ and parallel, so that $\mathbf{v} \times \mathbf{p}=0$
- And for the central force case, $\mathbf{r} \times \mathbf{F}=f(r) \mathbf{r} \times \hat{\mathbf{r}}=0$, so that

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =0 \\
\Longrightarrow \mathbf{L} & =\text { constant }
\end{aligned}
$$

- Thus, in case of central force motion, the angular momentum is conserved, both in direction, and magnitude

Conservation of angular momentum

- Conservation of angular momentum implies that the relative motion occurs in a plane

- Direction of \mathbf{L} is fixed, and because $\mathbf{r} \perp \mathbf{L}$, so \mathbf{r} must be in the same plane
- So, we can use plane polar coordinates (r, θ) to describe the motion
- We know that in plane polar coordinates

$$
\mathbf{a}=\ddot{\mathbf{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}
$$

- Therefore, the equation of motion $\mu \ddot{\mathbf{r}}=f(r) \hat{\mathbf{r}}$, becomes

$$
\mu\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+\mu(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}=f(r) \hat{\mathbf{r}}
$$

- On comparing both sides, we obtain following two equations

$$
\begin{aligned}
\mu\left(\ddot{r}-r \dot{\theta}^{2}\right) & =f(r) \\
\mu(2 \dot{r} \dot{\theta}+r \ddot{\theta}) & =0
\end{aligned}
$$

- By multiplying second equation on both sides by r, we obtain

$$
\frac{d}{d t}\left(\mu r^{2} \dot{\theta}\right)=0
$$

- This equation yields

$$
\mu r^{2} \dot{\theta}=L(\text { constant })
$$

we called this constant L because it is nothing but the angular momentum of the particle about the origin. Note that $L=I \omega$, with $I=\mu r^{2}$.

- As the particle moves along the trajectory so that the angle θ changes by an infinitesimal amount $d \theta$, the area swept with respect to the origin is

$$
\begin{aligned}
d A & =\frac{1}{2} r^{2} d \theta \\
\Longrightarrow \frac{d A}{d t} & =\frac{1}{2} r^{2} \dot{\theta}=\frac{L}{2 \mu}=\text { constant }
\end{aligned}
$$

because L is constant.

- Thus constancy of areal velocity is a property of all central forces, not just the gravitational forces.
- And it holds due to conservation of angular momentum

Conservation of Energy

- Kinetic energy in plane polar coordinates can be written as

$$
\begin{aligned}
K & =\frac{1}{2} \mu \mathbf{v} \cdot \mathbf{v} \\
& =\frac{1}{2} \mu(\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\theta}) \cdot(\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\theta}) \\
& =\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\theta}^{2}
\end{aligned}
$$

- Potential energy $V(r)$ can be obtained by the basic formula

$$
V(r)-V\left(r_{O}\right)=-\int_{0}^{r} f(r) d r
$$

where r_{O} denotes the location of a reference point.

Conservation of Energy...

- Total energy E from work-energy theorem

$$
E=\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{\theta}^{2}+V(r)=\text { constant }
$$

- We have

$$
\begin{aligned}
L & =\mu r^{2} \dot{\theta} \\
\Longrightarrow \frac{1}{2} \mu r^{2} \dot{\theta}^{2} & =\frac{L^{2}}{2 \mu r^{2}}
\end{aligned}
$$

- So that

$$
E=\frac{1}{2} \mu \dot{r}^{2}+\frac{L^{2}}{2 \mu r^{2}}+V(r)
$$

- We can write

$$
\begin{aligned}
E & =\frac{1}{2} \mu \dot{r}^{2}+V_{e f f}(r) \\
\text { with } V_{e f f}(r) & =\frac{L^{2}}{2 \mu r^{2}}+V(r)
\end{aligned}
$$

Conservation of energy contd.

- This energy is similar to that of a 1D system, with an effective potential energy $V_{\text {eff }}(r)=\frac{L^{2}}{2 \mu r^{2}}+V(r)$
- In reality $\frac{L^{2}}{2 \mu r^{2}}$ is kinetic energy of the particle due to angular motion
- But, because of its dependence on position, it can be treated as an effective potential energy
- Energy conservation equation yields

$$
\frac{d r}{d t}=\sqrt{\frac{2}{\mu}\left(E-V_{\text {eff }}(r)\right)}
$$

- Leading to the solution

$$
\begin{equation*}
\int_{r_{0}}^{r} \frac{d r}{\sqrt{\frac{2}{\mu}\left(E-V_{e f f}(r)\right)}}=t-t_{0} \tag{1}
\end{equation*}
$$

which will yield r as a function of t, once $f(r)$ is known, and the integral is performed

Integration of equations of motion...

- Once $r(t)$ is known, to obtain $\theta(t)$, we use conservation of angular momentum

$$
\begin{aligned}
\frac{d \theta}{d t} & =\frac{L}{\mu r^{2}} \\
\theta-\theta_{0} & =\frac{L}{\mu} \int_{t_{0}}^{t} \frac{d t}{r^{2}}
\end{aligned}
$$

- We can obtain the shape of the trajectory $r(\theta)$, by combining these two equations

$$
\frac{d \theta}{d r}=\left(\frac{\frac{d \theta}{d t}}{\frac{d r}{d t}}\right)=\frac{\frac{L}{\mu r^{2}}}{\sqrt{\frac{2}{\mu}\left(E-V_{e f f}(r)\right)}}
$$

- Leading to

$$
\begin{equation*}
\theta-\theta_{0}=L \int_{r_{0}}^{r} \frac{d r}{r^{2} \sqrt{2 \mu\left(E-V_{e f f}(r)\right)}} \tag{2}
\end{equation*}
$$

- Thus, by integrating these equations, we can obtain $r(t), \theta(t)$, and $r(\theta)$
- This will complete the solution of the problem
- But, to make further progress, we need to know what is $f(r)$
- Next, we will discuss the case of gravitational problem such as planetary orbits

Case of Planetary Motion: Keplerian Orbits

- We want to use the theory developed to calculate the orbits of different planets around sun
- Planets are bound to sun because of gravitational force
- Therefore

$$
f(r)=-\frac{G M m}{r^{2}}
$$

- So that

$$
\begin{equation*}
V(r)=-\frac{G M m}{r}=-\frac{C}{r}, \tag{3}
\end{equation*}
$$

above, $C=G M m$, where G is gravitational constant, M is mass of the Sun, and m is mass of the planet in question.

- On substituting $V(r)$ from Eq. 3 into Eq. 2, we have

$$
\begin{align*}
\theta-\theta_{0} & =L \int_{r_{0}}^{r} \frac{d r}{r^{2} \sqrt{2 \mu\left(E-\frac{L^{2}}{2 \mu r^{2}}+\frac{C}{r}\right)}} \\
& =L \int \frac{d r}{r \sqrt{2 \mu E r^{2}+2 \mu C r-L^{2}}} \tag{4}
\end{align*}
$$

- We converted the definite integral on the RHS to an indefinite one, because θ_{0} is a constant of integration in which the constant contribution of the lower limit $r=r_{0}$ can be absorbed. This orbital integral can be done by the following substitution

$$
\begin{align*}
r & =\frac{1}{s-\alpha} \tag{5}\\
\Longrightarrow d r & =-\frac{d s}{(s-\alpha)^{2}} \\
\Longrightarrow \frac{d r}{r} & =-\frac{d s}{(s-\alpha)} \tag{6}
\end{align*}
$$

Orbital integral....

- Substituting Eqs. 5 and 6, in Eq. 4, we obtain

$$
\begin{aligned}
\theta-\theta_{0} & =-L \int \frac{d s}{(s-\alpha) \sqrt{\frac{2 \mu E}{(s-\alpha)^{2}}+\frac{2 \mu C}{s-\alpha}-L^{2}}} \\
& =-L \int \frac{d s}{\sqrt{2 \mu E+2 \mu C(s-\alpha)-L^{2}(s-\alpha)^{2}}} \\
& =-L \int \frac{d s}{\sqrt{2 \mu E+2 \mu C s-2 \mu C \alpha-L^{2} s^{2}+2 L^{2} \alpha s-L^{2} \alpha^{2}}}
\end{aligned}
$$

- The integrand is simplified if we choose $\alpha=-\frac{\mu C}{L^{2}}$, leading to

$$
\begin{aligned}
\theta-\theta_{0} & =-L \int \frac{d s}{\sqrt{2 \mu E+2 \frac{(\mu C)^{2}}{L^{2}}-L^{2} s^{2}-\frac{(\mu C)^{2}}{L^{2}}}} \\
& =-L \int \frac{d s}{\sqrt{2 \mu E+\frac{(\mu C)^{2}}{L^{2}}-L^{2} s^{2}}}
\end{aligned}
$$

Orbital integral contd.

- Finally, the integral is

$$
\begin{aligned}
\theta-\theta_{0} & =-L^{2} \int \frac{d s}{\sqrt{2 \mu E L^{2}+(\mu C)^{2}-L^{4} s^{2}}} \\
& =-\int \frac{d s}{\sqrt{\frac{2 \mu E L^{2}+(\mu C)^{2}}{L^{4}}-s^{2}}}
\end{aligned}
$$

- On substituting $s=a \sin \phi$, where $a=\sqrt{\frac{2 \mu E L^{2}+(\mu C)^{2}}{L^{4}}}$, the integral transforms to

$$
\begin{aligned}
\theta-\theta_{0} & =-\phi=-\sin ^{-1}\left(\frac{s}{a}\right) \\
s & =-a \sin \left(\theta-\theta_{0}\right) \\
\Longrightarrow \frac{1}{r}+\alpha & =-a \sin \left(\theta-\theta_{0}\right) \\
\Longrightarrow r & =\frac{1}{-\alpha-a \sin \left(\theta-\theta_{0}\right)}
\end{aligned}
$$

Keplerian Orbit

- We define $r_{0}=-\frac{1}{\alpha}=\frac{L^{2}}{\mu C}$, to obtain

$$
r=\frac{r_{0}}{1-\sqrt{1+\frac{2 E L^{2}}{\mu C^{2}}} \sin \left(\theta-\theta_{0}\right)}
$$

- Conventionally, one takes $\theta_{0}=-\pi / 2$, and we define

$$
\varepsilon=\sqrt{1+\frac{2 E L^{2}}{\mu C^{2}}}
$$

- To obtain the final result

$$
r=\frac{r_{0}}{1-\varepsilon \cos \theta}
$$

- We need to probe this expression further to find which curve it represents.

A Brief Review of Conic Sections

- Curves such as circle, parabola, ellipse, and hyperbola are called conic sections

- We will show that the curve $r=\frac{r_{0}}{1-\varepsilon \cos \theta}$ in plane polar coordinates, denotes different conic sections for various values of ε, which is nothing but the eccentricity

Nature of orbits: parabolic orbit

- Using the fact that $r=\sqrt{x^{2}+y^{2}}$, and $\cos \theta=\frac{x}{r}=\frac{x}{\sqrt{x^{2}+y^{2}}}$, we obtain

$$
\begin{gathered}
\sqrt{x^{2}+y^{2}}=\frac{r_{0}}{1-\frac{\varepsilon x}{\sqrt{x^{2}+y^{2}}}} \\
\Longrightarrow \sqrt{x^{2}+y^{2}}=r_{0}+\varepsilon x \\
\Longrightarrow x^{2}\left(1-\varepsilon^{2}\right)-2 r_{0} \varepsilon x+y^{2}=r_{0}^{2}
\end{gathered}
$$

- Case I: $\varepsilon=1$, which means $E=0$, we obtain

$$
y^{2}=2 r_{0} x+r_{0}^{2}
$$

which is nothing but a parabola. This is clearly an open or unbound orbit. This is typically the case with comets.

Nature of orbits: hyperbolic and circular orbits

- Case II: $\varepsilon>1 \Longrightarrow E>0$, let us define $A=\varepsilon^{2}-1>$. With this, the equation of the orbit is

$$
y^{2}-A x^{2}-2 r_{0} \sqrt{1+A} x=r_{0}^{2}
$$

Here, the coefficients of x^{2} and y^{2} are opposite in sign, therefore, the curve is unbounded, i.e., open. It is actually the equation of a hyperbola. Therefore, whenever $E>0$, the particles execute unbound motion, and some comets and asteroids belong to this class.

- Case III: $\varepsilon=0$, we have

$$
x^{2}+y^{2}=r_{0}^{2}
$$

which denotes a circle of radius r_{0}, with center at the origin. This is clearly a closed orbit, for which the system is bound. $\varepsilon=\sqrt{1+\frac{2 E L^{2}}{\mu C^{2}}}=0 \Longrightarrow E=-\frac{\mu C^{2}}{2 L^{2}}<0$. Satellites launched by humans are put in circular orbits many times, particularly the geosynchronous ones.

Nature of orbits: elliptical orbits

- Case IV: $0<\varepsilon<1 \Longrightarrow E<0$, here we define $A=\left(1-\varepsilon^{2}\right)>0$, to obtain

$$
A x^{2}-2 r_{0} \sqrt{1-A} x+y^{2}=r_{0}^{2}
$$

Because coefficients of x^{2} and y^{2} are both positive, orbit will be closed (i.e. bound), and will be an ellipse.

- To summarize, when $E \geq 0$, orbits are unbound, i.e., hyperbola or parabola
- When $E<0$, orbits are bound, i.e., circle or ellipse.
- There are two ways to compute the time needed to go around its elliptical orbit once
- First approach involves integration of the equation

$$
\begin{aligned}
t_{b}-t_{a} & =\int_{r_{a}}^{r_{b}} \frac{d r}{\sqrt{\frac{2}{\mu}\left(E-\frac{L^{2}}{2 \mu r^{2}}+\frac{C}{r}\right)}} \\
& =\mu \int_{r_{a}}^{r_{b}} \frac{r d r}{\sqrt{\left(2 \mu E r^{2}+2 \mu C r-L^{2}\right)}}
\end{aligned}
$$

- When this is integrated with the limit $r_{b}=r_{a}$, one obtains that time period T satisfies

$$
T^{2}=\frac{\pi^{2} \mu}{2 C} A^{3}
$$

where A is semi-major axis of the elliptical orbit. This result is nothing but Kepler's third law.

Time period of the elliptical orbit...

- Now we use an easier approach to calculate the time period
- We use the constancy of angular momentum

$$
\begin{aligned}
L & =\mu r^{2} \frac{d \theta}{d t} \\
\Longrightarrow \frac{L}{2 \mu} d t & =\frac{1}{2} r^{2} d \theta
\end{aligned}
$$

- R.H.S. of the previous equation is nothing but the area element swept as the particle changes its position by $d \theta$

- Now, the integrals on both sides can be carried out to yield

$$
\frac{L T}{2 \mu}=\text { area of ellipse }=\pi a b
$$

Time period of the orbit contd.

- a and b in the equation are semi-major and semi-minor axes of the ellipse as shown

- Now, we have

- Therefore

$$
a=\frac{A}{2}=\frac{\left(r_{\min }+r_{\max }\right)}{2}
$$

- Using the orbital equation $r=\frac{r_{0}}{1-\varepsilon \cos \theta}$, we have

$$
a=\frac{1}{2}\left(\frac{r_{0}}{1-\varepsilon \cos \pi}+\frac{r_{0}}{1-\varepsilon \cos 0}\right)=\frac{r_{0}}{2}\left(\frac{1}{1+\varepsilon}+\frac{1}{1-\varepsilon}\right)=\frac{r_{0}}{1-\varepsilon^{2}}
$$

- Calculation of b is slightly involved. Following diagram is helpful

Calculation of time period...

- x_{0} is the distance between the focus and the center of the ellipse, thus

$$
x_{0}=a-r_{\min }=\frac{r_{0}}{1-\varepsilon^{2}}-\frac{r_{0}}{1+\varepsilon}=\frac{r_{0} \varepsilon}{1-\varepsilon^{2}}
$$

- In the diagram $b=\sqrt{r^{2}-x_{0}^{2}}$, and for θ, we have $\cos \theta=\frac{x_{0}}{r}$, which on substitution in orbital equation yields

$$
\begin{aligned}
r & =\frac{r_{0}}{1-\varepsilon \cos \theta}=\frac{r_{0}}{1-\frac{\varepsilon x_{0}}{r}} \\
\Longrightarrow r & =r_{0}+\varepsilon x_{0}=r_{0}+\frac{r_{0} \varepsilon^{2}}{1-\varepsilon^{2}}=\frac{r_{0}}{1-\varepsilon^{2}}
\end{aligned}
$$

- So that

$$
b=\sqrt{r^{2}-x_{0}^{2}}=\sqrt{\frac{r_{0}^{2}}{\left(1-\varepsilon^{2}\right)^{2}}-\frac{r_{0}^{2} \varepsilon^{2}}{\left(1-\varepsilon^{2}\right)^{2}}}=\frac{r_{0}}{\sqrt{1-\varepsilon^{2}}}
$$

Time period....

- Now

$$
1-\varepsilon^{2}=1-\left(1+\frac{2 E L^{2}}{\mu C^{2}}\right)=-\frac{2 E L^{2}}{\mu C^{2}}
$$

- Using $r_{0}=\frac{L^{2}}{\mu C}$, we have

$$
\begin{aligned}
& A=2 a=\frac{2 r_{0}}{1-\varepsilon^{2}}=\frac{2 L^{2}}{\mu C} \times\left(-\frac{\mu C^{2}}{2 E L^{2}}\right)=-\frac{C}{E} \\
& b=\frac{r_{0}}{\sqrt{1-\varepsilon^{2}}}=\frac{L^{2}}{\mu C} \times \sqrt{-\frac{\mu C^{2}}{2 E L^{2}}}=L \sqrt{-\frac{1}{2 \mu E}}
\end{aligned}
$$

- Using this, we have

$$
T=\frac{2 \pi \mu}{L} a b=\frac{2 \pi \mu}{L} \times\left(-\frac{C}{2 E}\right) \times L \sqrt{-\frac{1}{2 \mu E}}=\pi \sqrt{\frac{\mu}{2 C}}\left(-\frac{C}{E}\right)^{3 / 2}
$$

- Which can be written as

$$
\begin{aligned}
T & =\pi \sqrt{\frac{\mu}{2 C}} A^{3 / 2} \\
\Longrightarrow T^{2} & =\frac{\pi^{2} \mu}{2 C} A^{3},
\end{aligned}
$$

which is nothing but Kepler's third law.

