
EP 222: Classical Mechanics
Tutorial Sheet 3

This tutorial sheet contains exercises related to the central force problem.

1. Suppose a satellite is moving around a planet in a circular orbit of radius r0. Due to
a collision with another object, satellite’s orbit gets perturbed. Show that the radial
position of the satellite will execute simple harmonic motion with ω = l

mr20
, where l is

the initial angular momentum of the satellite.
Soln: Because it is a small perturbation, we can Taylor expand the potential energy
of the satellite around r0 = rmin

V
′
(r) = Vmin + (r − rmin)

dV
′

dr

∣∣∣∣
r=rmin

+
1

2
(r − rmin)2d

2V
′

dr2

∣∣∣∣
r=rmin

+ · · ·

Noting that

dV
′

dr

∣∣∣∣
r=rmin

= 0

d2V
′

dr2

∣∣∣∣
r=rmin

=
3l2

mr4
min

− 2k

r3
min

=
3l2

m

(
m4k4

l8

)
− 2k

(
m3k3

l6

)
=
m3k4

l6

But, balance of force condition for the circular orbit yields

mv2

rmin
=

k

r2
min

,

from which, using the fact that v = l/mrmin, we obtain k = l2/mrmin. Therefore,

d2V
′

dr2

∣∣∣∣
r=rmin

=
m3

l6

(
l8

m4r4
min

)
=

l2

mr4
min

but rmin = r0

V
′
(r) ≈ Vmin +

l2

2mr4
0

(r − r0)2

Radial equation of motion of the perturbed orbit

mr̈ = −dV
′
(r)

dr
= − l2

mr4
0

(r − r0)

Define x = r − r0, we obtain from above

ẍ+ ω2x,

where ω = l
mr20

, and equation above denotes simple harmonic motion about r = r0,
with frequency ω.
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2. A particle of mass m is moving under the influence of a central force F(r) = − C
r3
r̂,

with C > 0. Find the nonzero values of angular momentum l for which the particle
will move in a circular orbit.
Soln: For this, the potential energy can be obtained as

V (r) = −
∫ r

∞
F (r′)dr′ = C

∫ r

∞

dr′

r′3
= − C

2r2

∣∣∣∣r
∞

= − C

2r2
.

The effective potential energy for this case

V
′
(r) =

l2

2mr2
− C

2r2
.

We know that for the circular orbit, the total energy must be equal to the minimum
of the effective potential energy, which can be found by

dV
′
(r)

dr
= − l2

mr3
+
C

r3
= 0

=⇒ l =
√
mC.

Thus, if the system has this angular momentum, circular orbit of any radius is possible.

3. In the lectures, we obtained the equation of the orbit (an equation connecting r and
θ) for the Kepler’s problem (V (r) = −k/r), by solving a second order differential
equation for the variable u = 1/r. Show that one gets the same result if one directly
integrates the integral connecting the r and θ coordinates, derived in the lectures.
Soln: In the lectures it was shown that the equation of the orbit is given by

θ = θ0 −
u∫

u0

du√
2mE
l2
− 2mV

l2
− u2

,

where u = 1/r. For the Kepler problem V (r) = −k/r =⇒ V (u) = −ku, so that the
integral becomes

θ = θ0 −
u∫

u0

du√
2mE
l2

+ 2mku
l2
− u2

. (1)

Integral of Eq. (1) can be performed using the standard integral∫
dx√

α + βx+ γx2
=

1√
−γ

cos−1−
(
β + 2γx
√
q

)
, (2)

where, q = β2 − 4αγ, and identifying

α =
2mE

l2
, β =

2mk

l2
, γ = −1,
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we obtain in Eq. (1)

θ − θ0 = − cos−1

−
 2mk

l2
− 2u√

4m2k2

l4
+ 8mE

l2


 ,

which can be simplified to

1

r
=
mk

l2

(
1 + e cos(θ − θ′

)
)
,

where

e =

√
1 +

2El2

mk2
.

Clearly, the orbit is a conic section of eccentricity e.

4. Two particles move about each other in circular orbits under the influence of gravita-
tional forces, with a period τ . Their motion is suddenly stopped at a given instant of
time, and they are then released and allowed to fall into each other. Prove that they
collide after a time τ/4

√
2.

Solution: Since the two bodies are interacting under a central force (gravitational
force), their motion can be seen as that of a single particle of mass µ = mim2

mi+m2
, about

the center of mass. So, here we have for circular orbits

Figure 1:

µv2

r0

=
k

r2
0

,

v =

√
k

r0µ
,

So, the time period

τ =
2πr0

v
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τ = 2π

√
r3

0µ

k
, (3)

r0 =

(
kτ 2

4π2µ

) 1
3

.

If the particle are momentarily stopped at this position and then released, the law of
conservation of energy for subsequent motion tell us (motion is purely radial)

1

2
µṙ2 − k

r
= − k

r0

,

dr

dt
= −

√
2k

µ

(
1

r
− 1

r0

)
,

negative sign for radial speed implies that radial distance is decreasing with time. Thus
the time taken for the particle to collide with each other is

T = −
√

µ

2k

0∫
r0

dr√(
1
r
− 1

r0

) ,

T = −
√

µ

2k
r0

0∫
r0

√
rdr√
r0 − r

,

substituting r = r0 sin2 θ and dr = 2r0 sin θ cos θdθ. So that

−
0∫

r0

√
rdr√
r0 − r

=

π
2∫

0

r
1
2
0 sin θ2r0 sin θ cos θdθ

r
1
2
0 cos θ

,

= 2r0

π
2∫

0

sin2 θdθ,

= r0

π
2∫

0

(1− cos 2θ) θdθ,

=

[(
θ − 1

2
sin 2θ

)
r0

]π
2

0

,

=
π

2
r0.

So,

T =

√
µ

2k
r0

(π
2
r0

)
,
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T =
π

2
√

2

√
µ

k
r3

0,

using Eq. 1, we get

T =
τ

4
√

2
.

5. Show that the motion of a particle in the potential field

V (r) = −k
r

+
h

r2

is the same as that of the motion under the Kepler potential alone when expressed in
terms of a coordinate system rotating or precessing around the center of force. For
negative total energy, show that if the additional potential term is very small compared
to the Kepler potential, then the angular speed of precession of the elliptical orbit is

Ω̇ =
2πmh

l2τ
.

The perihelion of Mercury is observed to precess (after correction for known planetary
perturbations) at the rate of 40

′′ of arc per century. Show that this precession could
be accounted for classically if the dimensionless quantity

η =
h

ka

(which is a measure of the perturbing inverse-square potential relative to the gravi-
tational potential) were as small as 7 × 10−8. (The eccentricity of Mercury’s orbit is
0.206, and its period is 0.24 year.)
Solution: The equation of the orbit is given by

θ = θ0 −
u∫

u0

du√
2mE
l2
− 2mV

l2
− u2

,

since
V (r) = −k

r
+
h

r2
,

V (u) = −ku+ hu2,

So from above we get

θ = θ0 −
u∫

u0

du√
2mE
l2

+ 2mku
l2
−
(

2mh
l2

+ 1
)
u2

,

but we know that ∫
dx√

α + βx+ γx2
=

1√
−γ

cos−1−
(
β + 2γx
√
q

)
,
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where, q = β2 − 4αγ. Here, we have

α =
2mE

l2
, β =

2mk

l2
,

γ = −
(

2mh+ l2

l2

)
,

so,

q = β2 − 4αγ =
4m2k2

l4
+

8mE (2mh+ l2)

l4
,

q =
4m2k2 + 16m2Eh+ 8mEl2

l4
.

So, we get

θ = θ0 −
l√

2mh+ l2
cos−1

[
− 2mk − 2 (2mh+ l2)u√

4m2k2 + 16m2Eh+ 8mEl2

]
,

θ = θ0 −
l√

2mh+ l2
cos−1

−
((

2mh+l2

mk

)
u− 1

)
√

2E
mk2

(2mh+ l2) + 1

 ,
√

1 + 2mh

l2
(θ − θ0) = − cos−1


((

2mh+l2

mk

)
u− 1

)
√

2E
mk2

(2mh+ l2) + 1

 ,
or by further simplifying we get,

1

r
= c [1 + ε cosαθ] , (4)

where

c =
2mk

2mh+ l2
,

ε =

√(
1 +

2E (2mh+ l2)

mk2

)
,

α =

√
1 +

2mh

l2
.

Eq. 2 is the equation of an ellipse, where the particle makes an angle θ from a fixed
direction in space, but it makes an angle αθ from the semi-major axis.
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Figure 2:

Clearly, this corresponds to a semi-major axis that is rotating in space, or the ellipse
is precessing. This is can be written as

αθ(t) = θ(t)− Ω̇t,

where, Ω̇ is angular velocity of precession of the semi-major axis.

αθ̇ = θ̇ − Ω̇,

Ω̇ = (1− α) θ̇ = θ̇

(
1−

√
1 +

2mh

l2

)
,

for small h,

Ω̇ =
θ̇mh

l2
.

For small h, Ω̇ will be small and hence we can get a good estimate of it by putting
average value of θ̇, i.e.

θ̇ =
2π

τ
,

Ω̇ =
2πmh

l2τ
.

Because h is small, we can approximate ε by e, the eccentricity of the perfect ellipse

ε ≈ e =

√
1 +

2El2

mk2
,

and using the fact that for perfect elliptical orbit E = −k/2a, we obtain from above

m

l2
=

1

(1− ε2) ka
,

leading to

Ω̇ =
2π

τ

(
h

ka

)
1

1− ε2
,
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Ω̇ =
2π

τ
η

1

1− ε2
,

η =
Ω̇ (1− ε2) τ

2π
,

where ε = 0.206, τ = 0.24 year and Ω̇ = 40
′′ per century. By substituting all these

above, we obtain
η = 7.0× 10−8.

6. A geostationary orbit is one in which a satellite moves in a circular orbit at the given
height in the equatorial plane, so that its angular velocity of rotation around earth is
same as earth’s angular velocity, thereby, making it look stationary when seen from a
point on equator. Assuming that the earth’s rotational velocity, and radius, respec-
tively, are Ωe = 2π

86400
rad/s, andRe = 6400 km, calculate the altitude of the satellite,

and its orbital velocity.
Soln: The radius of the circular orbit is obtained by the force condition

GMem

r2
=
mv2

r

=⇒ r =
GMe

v2

For geostationary satellite v = Ωer, therefore,

r =
GMe

Ω2
er

2

=⇒ r =

(
GMe

Ω2
e

)1/3

But r = h+Re, where h is the needed altitude, and Re is the radius of the earth, and
GMe = gR2

e, therefore

h =

(
gR2

e

Ω2
e

)1/3

−Re.

Using the values g = 9.8 m/s2, Re = 6.4 × 106 m, and Ωe = 2π
86400

s−1, we obtain
h ≈ 35850 km. And orbital speed of the satellite v = rΩe = (35850 + 6400) × 106 ×

2π
86400

= 3070m/s

7. A space company wants to launch a satellite of mass m = 2000 kg, in an elliptical
orbit around earth, so that the altitude of the satellite above earth at perigee is 1100
kms, and at apogee it is 35,850 kms. Assuming that the launch takes place at the
equator, calculate: (a) energy of the satellite in the elliptical orbit, (b) energy required
to launch the satellite, (c) eccentricity of the orbit, (d) angular momentum of the
satellite, and (e) speeds of the satellite at apogee and perigee. Use the values of Re

and Ωe specified in the previous problem.(a) We showed in the lectures that for the
gravitational potential energy of the form

V (r) = −k
r
,
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the energy of a mass moving in an elliptical orbit is

E = − k
A
,

where A is the major axis of the ellipse. In this case k = GMem = R2
egm, where m is

the mass of the satellite. This elliptical orbit is about earth, with earth’s center as one
of its foci. Thus, A will be sum of earth’s diameter, altitude at perigee, and altitude
at apogee

A = (1100 + 2× 6400 + 35, 8500)× 103 = 5× 107m.

Therefore,

Eorb = −9.8× (6.4× 106)2 × 2000

5× 107
= −1.61× 1010J

(b) The energy of the satellite just before the launch is nothing but its gravitational
potential energy at the surface of the earth, and kinetic energy due to rotation of the
earth at the equator

Eground = V (r) +K = −GMem

Re

+
1

2
m(ΩeRe)

2

= −mgRe +
1

2
m(ΩeRe)

2

= −2000× 9.9× 6.4× 106 + 0.5× 2000× (6.4× 106)2 × (
2π

86400
)2

= −1.25× 1011J.

Therefore, energy required to launch the satellite will be

∆E = Eorb − Eground = 1.09× 1011J

(c) From the equation of the orbit r = r0/(1 + e cos θ), the radial distances from the
focus corresponding to perigee (rmin) and apogee (rmax) are given by

rmin =
r0

1 + e

rmax =
r0

1− e
These equations lead to

r0 = rmin(1 + ε) = rmax(1− ε)

=⇒ ε =
rmax − rmin
rmax + rmin

=
(35850 + 6400)− (1100 + 6400)

(35850 + 6400) + (1100 + 6400)
= 0.7

(d) To obtain the angular momentum we use the formula for eccentricity derived in
the lectures

e2 = 1 +
2Eorbl

2

mk2
,
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which on using various values yields

l = 1.43× 1014kg-m2/s

(e) We know that at perigee and apogee the velocity of the satellite will be perpendic-
ular to the radial distance from the earth’s center, thus

l = mrpvp = mrava,

where subscripts p and a denote, perigee and apogee respectively, m = 2000 kg,
rp = rmin = 1100 + 6400 = 7.5 × 106 m, ro = rmax = 35850 + 6400 = 4.225 × 107 m.
With this we obtain

va =
l

mra
= 1690m/s

vp =
l

mrp
= 9530m/s

8. The ultimate aim of the space company of the previous problem is to put the satellite in
a geostationary orbit. Therefore, after launching it in the elliptical orbit, the company
wants to transfer it in a geostationary orbit by firing rockets at the apogee to increase
its speed to the required one. How much change in speed is needed to put the satellite
in the geostationary orbit, and how much energy will be required to achieve that
change?
Soln: Recalling that in problem 5 we obtained that the radius of the geostationary
orbit is Rgeo = 35850 km + 6400 km = 4.225× 107 m, which is identical to the radial
distance at the apogee ro for the elliptical orbit. Thus, it is best to fire the rockets at
the apogee of the elliptical orbit, to provide it the energy needed for a geostationary
orbit. Now, energy required will be

∆E = − k

Ageo
− Eorb,

where Eorb is the energy of the elliptical orbit computed in the last problem, while Ageo
is the major axis corresponding to the geostationary orbit. But, because geostationary
orbit is a circular one, therefore, its major axis is nothing but its diameter, so that
Ageo = 2Rgeo = 8.45× 107m. Using this we obtain

∆E = 6.6× 109 J.

To compute the change in speed, we note that change in energy ∆E, changes only
the kinetic energy of the satellite because during the rocket firing, the location of the
satellite does not change, and hence its potential energy remains constant. Thus, if vf
is the final speed of the satellite after the rocket is fired, we have

1

2
mv2

f −
1

2
mv2

a = ∆E = 6.6× 109

=⇒ vf =

√
2∆E +mv2

a

m
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Above va is the speed of the satellite at the apogee, calculated in the previous problem.
Using values of various quantities, we obtain the required change in speed

∆v = vf − va =

√
2× 6.6× 109 + 2000× (1690)2

2000
− 1690

= 3070− 1690 = 1110m/s

9. Examine the scattering produced by a repulsive central force f = kr−3. Show that the
differential cross section is given by

σ(Θ)dΘ =
k

2E

(1− x)dx

x2(2− x)2 sin πx
,

where x = Θ/π, and E is energy.
Solution: The repulsive force is given as,

f =
k

r3
,

V =
2k

r2
= 2ku2,

So the equation of orbit is

θ = θ0 −
u∫

u0

du√
2mE
l2
− 4mku2

l2
− u2

,

θ = θ0 −
u∫

u0

du√
2mE
l2
−
(
1 + 4mk

l2

)
u2

,

but we know that ∫
dx√

α + βx+ γx2
=

1√
−γ

cos−1−
(
β + 2γx
√
q

)
,

where, q = β2 − 4αγ. Here, we have

α =
2mE

l2
, β = 0,

and
γ = −

(
1 +

4mk

l2

)
.

So, we get

(θ − θ0) = − l√
l2 + 4mk

cos−1 u

√
1 + 4mk

l2

2mE
l2

,
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If we measure angles from periapsis we can set θ0 = 0, so that

u

√
l2

2mE
+

2k

E
= cos

√
1 +

4mk

l2
θ,

1

r
=

1√
2k
E

+ l2

2mE

cos

√
1 +

4mk

l2
θ,

for r →∞, θ →
(
π
2
− Θ

2

)
,

cos

√
1 +

4mk

l2

(
π

2
− Θ

2

)
= 0,

√
1 +

4mk

l2

(
π

2
− Θ

2

)
=
π

2
,

define x = Θ
π
and using l = s

√
2mE,we get

1 +
2k

s2E
=

1

(1− x)2 ,

s =

√
2k

E

(1− x)√
x (2− x)

.

Now,

ds

dΘ
=

ds

πdx
=

1

π

√
2k

E


−
√
x (2− x)− (1−x)(2−2x)

2
√
x(2−x)

x (2− x)

 ,

| ds
dΘ
| = 1

π

√
2k

E

1

x
3
2 (2− x)

3
2

.

Now,

σ(Θ)dΘ =
s

sin Θ
| ds
dΘ
|dΘ,

So,

σ(Θ)dΘ =
1

π

√
2k

E

(1− x)√
x (2− x) sinπx

√
2k

E

πdx

x
3
2 (2− x)

3
2

,

σ(Θ)dΘ =
2k

E

(1− x) dx

x2 (2− x)2 sin πx
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