EP 222: Classical Mechanics Tutorial Sheet 7: Solution

This tutorial sheet contains problems related to Hamiltonian formalism of classical mechanics.

1. Consider a double pendulum composed of two identical pendula of massless rods of length l, and masses m, attached along the vertical direction. Obtain the Hamiltonian of this system, and derive Hamilton's equations of motion.
Soln:

We showed in the lectures that using the point of suspension of the upper pendulum as the origin of the coordinate system, the Lagrangian of a double pendulum consisting of equal masses m, and equal length (l) pendula is given by

$$
\begin{aligned}
L & =m l^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m l^{2} \dot{\theta}_{2}^{2}+m l^{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1} \dot{\theta}_{2} \\
& +2 m g l \cos \theta_{1}+m g l \cos \theta_{2}
\end{aligned}
$$

Using the definition of the generalized momenta, we have

$$
\begin{aligned}
& p_{1}=\frac{\partial L}{\partial \dot{\theta}_{1}} \\
& p_{2}=\frac{\partial L}{\partial \dot{\theta}_{2}}
\end{aligned}
$$

leading to

$$
\begin{aligned}
& p_{1}=2 m l^{2} \dot{\theta}_{1}+m l^{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{2} \\
& p_{2}=m l^{2} \dot{\theta}_{2}+m l^{2} \cos \left(\theta_{1}-\theta_{2}\right) \dot{\theta}_{1}
\end{aligned}
$$

We can solve for $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ in terms of p_{1} and p_{2}, to obtain

$$
\begin{align*}
& \dot{\theta}_{1}=\frac{p_{1}-p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)} \tag{1}\\
& \dot{\theta}_{2}=\frac{2 p_{2}-p_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)} \tag{2}
\end{align*}
$$

Hamiltonian is defined as the Legendre transform of the Lagrangian

$$
H=p_{1} \dot{\theta}_{1}+p_{2} \dot{\theta}_{2}-L
$$

where the generalized velocities $\dot{\theta}_{1}$ and $\dot{\theta}_{2}$ are expressed in terms of generalized momenta p_{1} and p_{2}, using Eqs (1) and (2) above

$$
\begin{aligned}
H & =p_{1}\left(\frac{p_{1}-p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right)+p_{2}\left(\frac{2 p_{2}-p_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right) \\
& -m l^{2}\left(\frac{p_{1}-p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right)^{2}-\frac{1}{2} m l^{2}\left(\frac{2 p_{2}-p_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right)^{2} \\
& -m l^{2} \cos \left(\theta_{1}-\theta_{2}\right)\left(\frac{p_{1}-p_{2} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right)\left(\frac{2 p_{2}-p_{1} \cos \left(\theta_{1}-\theta_{2}\right)}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\right) \\
& -2 m g l \cos \theta_{1}-m g l \cos \theta_{2} .
\end{aligned}
$$

This, after some tedious algebra, can be simplified to

$$
\begin{aligned}
H & =\frac{1}{m l^{2}\left(1+\sin ^{2}\left(\theta_{1}-\theta_{2}\right)\right)}\left\{\frac{p_{1}^{2}}{2}+p_{2}^{2}-p_{1} p_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right\} \\
& -2 m g l \cos \theta_{1}-m g l \cos \theta_{2}
\end{aligned}
$$

Question: Is the Hamiltonian same as total energy for this system, i.e., $H=T+V$? Answer: We studied in the lectures that it is the case if the following two conditions are followed: (a) Potential energy is independent of generalized velocity, which is the case here, and (b) kinetic energy is a homogeneous function of degree 2 of the generalized velocities, which in this case means that $\frac{\partial T}{\partial \dot{\theta}_{1}} \dot{\theta}_{1}+\frac{\partial T}{\partial \dot{\theta}_{2}} \dot{\theta}_{2}=2 T$, which can be verified to be true here. Hence, the given Hamiltonian is the total energy of the system.
2. The Lagrangian for a system can be written as

$$
L=a \dot{x}^{2}+b \frac{\dot{y}}{x}+c \dot{x} \dot{y}+f y^{2} \dot{x} \dot{z}+g \dot{y}-k \sqrt{x^{2}+y^{2}}
$$

where a, b, c, f, g, and k are constants. What is the Hamiltonian? What quantities are conserved?
Soln: Hamiltonian will be

$$
H=p_{x} \dot{x}+p_{y} \dot{y}+p_{z} \dot{z}-L
$$

where

$$
\begin{aligned}
p_{x} & =\frac{\partial L}{\partial \dot{x}} \\
p_{y} & =\frac{\partial L}{\partial \dot{y}} \\
p_{z} & =\frac{\partial L}{\partial \dot{z}}
\end{aligned}
$$

Thus

$$
\begin{align*}
p_{x} & =2 a \dot{x}+c \dot{y}+f y^{2} \dot{z} \tag{3}\\
p_{y} & =\frac{b}{x}+c \dot{x}+g \tag{4}\\
p_{z} & =f y^{2} \dot{x} \tag{5}
\end{align*}
$$

Here, Eqs. (4) and (5) give separate expressions for \dot{x} in terms of momenta, so it is better to first compute the Hamiltonian in terms of velocities, and then eliminate them to get the momenta. With this we have

$$
\begin{aligned}
H & =\dot{x}\left(2 a \dot{x}+c \dot{y}+f y^{2} \dot{z}\right)+\dot{y}\left(\frac{b}{x}+c \dot{x}+g\right)+\dot{z}\left(f y^{2} \dot{x}\right) \\
& -a \dot{x}^{2}-b \frac{\dot{y}}{x}-c \dot{x} \dot{y}-f y^{2} \dot{x} \dot{z}-g \dot{y}+k \sqrt{x^{2}+y^{2}} \\
& =a \dot{x}^{2}+c \dot{x} \dot{y}+f y^{2} \dot{x} \dot{z}+k \sqrt{x^{2}+y^{2}} \\
& =\dot{x}\left(2 a \dot{x}+c \dot{y}+f y^{2} \dot{z}\right)-a \dot{x}^{2}+k \sqrt{x^{2}+y^{2}} \\
& =\left(\frac{p_{z}}{f y^{2}}\right) p_{x}-a\left(\frac{p_{z}}{f y^{2}}\right)^{2}+k \sqrt{x^{2}+y^{2}} \\
& =\left(\frac{p_{z}}{f y^{2}}\right)\left(p_{x}-a \frac{p_{z}}{f y^{2}}\right)+k \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Above, we used Eqs. (3) and (5) to eliminate the velocities. This Hamiltonian cannot be total energy because it is easy to verify that the velocity dependent part of it is not a second degree homogeneous function of velocities. However, Hamiltonian is not an explicit function of time, therefore, it is conserved. Furthermore, it does not depend on z, i.e., z is a cyclic coordinate, therefore, p_{z} will also be conserved.
3. A dynamical system has the Lagrangian

$$
L=\dot{q}_{1}^{2}+\frac{\dot{q}_{2}^{2}}{a+b q_{1}^{2}}+k_{1} q_{1}^{2}+k_{2} \dot{q}_{1} \dot{q}_{2}
$$

where a, b, k_{1}, and k_{2} are constants. Find the equations of motion in the Hamiltonian formalism.
Soln: As before

$$
H=\dot{q}_{1} p_{1}+\dot{q}_{2} p_{2}-L
$$

with

$$
\begin{aligned}
& p_{1}=\frac{\partial L}{\partial \dot{q}_{1}}=2 \dot{q}_{1}+k_{2} \dot{q}_{2} \\
& p_{2}=\frac{\partial L}{\partial \dot{q}_{2}}=\frac{2 \dot{q}_{2}}{a+b q_{1}^{2}}+k_{2} \dot{q}_{1}
\end{aligned}
$$

These can be solved to obtain $\dot{q}_{1} / \dot{q}_{2}$ in terms of p_{1} / p_{2}

$$
\begin{align*}
& \dot{q}_{1}=\frac{\left\{-2 p_{1}+k_{2}\left(a+b q_{1}^{2}\right) p_{2}\right\}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}} \tag{6}\\
& \dot{q}_{2}=\frac{\left\{\left(a+b q_{1}^{2}\right)\left(k_{2} p_{1}-2 p_{2}\right)\right\}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}} \tag{7}
\end{align*}
$$

But the velocity dependent part of the Lagrangian is a homogeneous function of degree 2 in the velocities, there is a part which is totally independent of the velocity. Thus, Hamiltonian will be total energy

$$
H=\dot{q}_{1}^{2}+\frac{\dot{q}_{2}^{2}}{a+b q_{1}^{2}}+k_{2} \dot{q}_{1} \dot{q}_{2}-k_{1} q_{1}^{2}
$$

With this

$$
\begin{aligned}
H & =\frac{\left\{-2 p_{1}+k_{2}\left(a+b q_{1}^{2}\right) p_{2}\right\}^{2}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}^{2}}+\frac{1}{\left(a+b q_{1}^{2}\right)} \frac{\left\{\left(a+b q_{1}^{2}\right)\left(k_{2} p_{1}-2 p_{2}\right)\right\}^{2}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}^{2}} \\
& +k_{2} \frac{\left\{-2 p_{1}+k_{2}\left(a+b q_{1}^{2}\right) p_{2}\right\}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}} \times \frac{\left\{\left(a+b q_{1}^{2}\right)\left(k_{2} p_{1}-2 p_{2}\right)\right\}}{\left\{k_{2}^{2}\left(a+b q_{1}^{2}\right)-4\right\}}-k_{1} q_{1}^{2} \\
& =\frac{p_{1}^{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}}+\frac{\left(a+b q_{1}^{2}\right) p_{2}^{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}}-\frac{k_{2}\left(a+b q_{1}^{2}\right) p_{1} p_{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}}-k_{1} q_{1}^{2} .
\end{aligned}
$$

Hamilton's equations of motion are

$$
\begin{aligned}
\dot{q}_{i} & =\frac{\partial H}{\partial p_{i}} \\
\dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \dot{q}_{1}=\frac{\partial H}{\partial p_{1}}=\frac{2 p_{1}-k_{2}\left(a+b q_{1}^{2}\right) p_{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}} \\
& \dot{q}_{2}=\frac{\partial H}{\partial p_{2}}=\frac{\left(a+b q_{1}^{2}\right)\left(2 p_{2}-k_{2} p_{1}\right)}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}}
\end{aligned}
$$

These equations are the same as Eqs. (6) and (7) above. The other two Hamilton's equations are

$$
\begin{aligned}
\dot{p}_{1} & =-\frac{\partial H}{\partial q_{1}} \\
& =-\frac{2 b k_{2}^{2} q_{1} p_{1}^{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}^{2}}-\frac{2 b q_{1} p_{2}^{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}} \\
& -\frac{2 b k_{2}^{2} q_{1}\left(a+b q_{1}^{2}\right) p_{2}^{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}^{2}}+\frac{2 k_{2} b q_{1} p_{1} p_{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}} \\
& +\frac{2 k_{2}^{3} b\left(a+b q_{1}^{2}\right) q_{1} p_{1} p_{2}}{\left\{4-k_{2}^{2}\left(a+b q_{1}^{2}\right)\right\}^{2}}+2 k_{1} q_{1},
\end{aligned}
$$

and, because q_{2} is a cyclic coordinate, we have

$$
\dot{p}_{2}=-\frac{\partial H}{\partial q_{2}}=0
$$

4. A Hamiltonian of one degree of freedom has the form

$$
H=\frac{p^{2}}{2 a}-b q p e^{-\alpha t}+\frac{b a}{2} q^{2} e^{-\alpha t}\left(\alpha+b e^{-\alpha t}\right)+\frac{k q^{2}}{2},
$$

where a, b, α, and k are constants.
(a) Find a Lagrangian corresponding to this Hamiltonian

Soln: Here we have the reverse problem, compared to earlier ones. We have to obtain the Lagrangian from the Hamiltonian, using the formula

$$
\begin{equation*}
L=p \dot{q}-H \tag{8}
\end{equation*}
$$

where p will be eliminated using the Hamilton's equation

$$
\begin{align*}
\dot{q} & =\frac{\partial H}{\partial p}=\frac{p}{a}-b q e^{-\alpha t} \\
\Longrightarrow p & =a\left(\dot{q}+b q e^{-\alpha t}\right) \tag{9}
\end{align*}
$$

Using Eq. (9) in (8), we obtain the Lagrangian in terms of q and \dot{q}

$$
\begin{aligned}
L & =\dot{q} a\left(\dot{q}+b q e^{-\alpha t}\right)-\frac{a^{2}\left(\dot{q}+b q e^{-\alpha t}\right)^{2}}{2 a}+b a q\left(\dot{q}+b q e^{-\alpha t}\right) e^{-\alpha t} \\
& -\frac{b a}{2} q^{2} e^{-\alpha t}\left(\alpha+b e^{-\alpha t}\right)-\frac{k q^{2}}{2} \\
& =\frac{a \dot{q}^{2}}{2}-\frac{k q^{2}}{2}+b a q \dot{q} e^{-\alpha t}-\frac{a b \alpha}{2} q^{2} e^{-\alpha t} \\
& =\frac{a \dot{q}^{2}}{2}-\frac{k q^{2}}{2}+\frac{d}{d t}\left(\frac{1}{2} a b q^{2} e^{-\alpha t}\right),
\end{aligned}
$$

so that

$$
L=L_{0}+\frac{d F}{d t}
$$

with $L_{0}=\frac{a \dot{\dot{q}}^{2}}{2}-\frac{k q^{2}}{2}$ and $F(q, t)=\left(\frac{1}{2} a b q^{2} e^{-\alpha t}\right)$. Note that L_{0} is the Lagriangian for a one-dimensional simple Harmonic oscillator of mass a, and force constant k.
(b) Is it possible to find an equivalent Lagrangian that is not explicitly dependent on time?
Soln: Above we showed that the original Lagrangian L differs from a time independent Lagrangian L_{0} by a total time derivative. Which means that L and L_{0} are equivalent.
(c) If you are able to solve part (b), what is the Hamiltonian corresponding the new Lagrangian, and what is the relationship between the two Hamiltonians?
Soln: It is obvious that the Hamiltonian H_{0} corresponding to L_{0} will also be that for 1D SHO

$$
H_{0}=\frac{P^{2}}{2 a}+\frac{1}{2} k Q^{2},
$$

where new canonical variables are $P=\dot{q}$ and $Q=q$, so that the original Hamiltonian is

$$
H=H_{0}-b q p e^{-\alpha t}+\frac{b a}{2} q^{2} e^{-\alpha t}\left(\alpha+b e^{-\alpha t}\right)
$$

On using the fact that $p=a\left(\dot{q}+b q e^{-\alpha t}\right)=a\left(P+b Q e^{-\alpha t}\right)$, we obtain

$$
\begin{aligned}
H & =H_{0}-a b Q\left(P+b Q e^{-\alpha t}\right) e^{-\alpha t}+\frac{b a}{2} Q^{2} e^{-\alpha t}\left(\alpha+b e^{-\alpha t}\right) \\
& =H_{0}-a b Q P e^{-\alpha t}-\frac{1}{2} a b^{2} Q^{2} e^{-2 \alpha t}+\frac{b a \alpha}{2} Q^{2} e^{-\alpha t}
\end{aligned}
$$

5. (a) The Lagrangian for a system of one degree of freedom can be written as

$$
L=\frac{m}{2}\left(\dot{q}^{2} \sin ^{2} \omega t+\dot{q} q \omega \sin 2 \omega t+q^{2} \omega^{2}\right) .
$$

What is the corresponding Hamiltonian? Is it conserved?
Soln: We have

$$
\begin{aligned}
p & =\frac{\partial L}{\partial \dot{q}}=m \dot{q} \sin ^{2} \omega t+\frac{1}{2} m q \omega \sin 2 \omega t \\
\Longrightarrow \dot{q} & =\frac{\left(p-\frac{1}{2} m q \omega \sin 2 \omega t\right)}{m \sin ^{2} \omega t}
\end{aligned}
$$

So that

$$
\begin{aligned}
H & =p \dot{q}-L \\
& =\frac{p\left(p-\frac{1}{2} m q \omega \sin 2 \omega t\right)}{m \sin ^{2} \omega t}-\frac{m}{2} \frac{\left(p-\frac{1}{2} m q \omega \sin 2 \omega t\right)^{2}}{m^{2} \sin ^{4} \omega t} \\
& -\frac{m}{2} q \omega \frac{\left(p-\frac{1}{2} m q \omega \sin 2 \omega t\right)}{m \sin ^{2} \omega t} \sin 2 \omega t-\frac{1}{2} m \omega^{2} q^{2}
\end{aligned}
$$

which leads to a tedious time-dependent expression

$$
\begin{aligned}
H & =\frac{p^{2}}{2 m}\left(\frac{1}{\sin ^{2} \omega t}-\frac{1}{2 \sin ^{4} \omega t}\right) \\
& -\frac{1}{2} p q \omega \sin 2 \omega t\left(\frac{1}{\sin ^{2} \omega t}-\frac{1}{2 \sin ^{4} \omega t}\right) \\
& =\frac{1}{2} m \omega^{2} q^{2} \sin ^{2} 2 \omega t\left(\frac{1}{2 \sin ^{2} \omega t}-\frac{1}{4 \sin ^{4} \omega t}-1\right)
\end{aligned}
$$

which is not conserved because of its explicit time dependence.
(b) Introduce a new coordinate defined by

$$
Q=q \sin \omega t
$$

Find the Lagrangian in terms of the new coordinate and the corresponding Hamiltonian. Is H conserved?
Soln: We make the substitutions in the Lagrangian

$$
\begin{aligned}
& q=\frac{Q}{\sin \omega t} \\
& \dot{q}=\frac{\dot{Q}-\omega Q \cot \omega t}{\sin \omega t}
\end{aligned}
$$

and after some tedious algebra we obtain the Lagrangian in terms of new variables

$$
L=\frac{1}{2} m \dot{Q}^{2}+\frac{1}{2} m \omega^{2} Q^{2} .
$$

Clearly, the Hamiltonian in new coordinates (with $P=\frac{\partial L}{\partial \dot{Q}}=m \dot{Q}$) will be

$$
H=\frac{P^{2}}{2 m}-\frac{1}{2} m \omega^{2} Q^{2}
$$

which depends on canonical variables P and Q, both of which are explicitly time dependent. Therefore, Hamiltonian will not be conserved.

