
EP 222: Classical Mechanics
Tutorial Sheet 7: Solution

This tutorial sheet contains problems related to Hamiltonian formalism of classical me-
chanics.

1. Consider a double pendulum composed of two identical pendula of massless rods of
length l, and masses m, attached along the vertical direction. Obtain the Hamiltonian
of this system, and derive Hamilton’s equations of motion.
Soln:

We showed in the lectures that using the point of suspension of the upper pendulum as
the origin of the coordinate system, the Lagrangian of a double pendulum consisting
of equal masses m, and equal length (l) pendula is given by

L = ml2θ̇21 +
1

2
ml2θ̇22 +ml2 cos(θ1 − θ2)θ̇1θ̇2

+ 2mgl cos θ1 +mgl cos θ2.

Using the definition of the generalized momenta, we have

p1 =
∂L

∂θ̇1

p2 =
∂L

∂θ̇2
,

leading to

p1 = 2ml2θ̇1 +ml2 cos(θ1 − θ2)θ̇2
p2 = ml2θ̇2 +ml2 cos(θ1 − θ2)θ̇1.

We can solve for θ̇1 and θ̇2 in terms of p1 and p2, to obtain

θ̇1 =
p1 − p2 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

(1)

θ̇2 =
2p2 − p1 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

. (2)
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Hamiltonian is defined as the Legendre transform of the Lagrangian

H = p1θ̇1 + p2θ̇2 − L,

where the generalized velocities θ̇1 and θ̇2 are expressed in terms of generalized mo-
menta p1 and p2, using Eqs (1) and (2) above

H = p1

(
p1 − p2 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)
+ p2

(
2p2 − p1 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)
−ml2

(
p1 − p2 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)2

− 1

2
ml2

(
2p2 − p1 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)2

−ml2 cos(θ1 − θ2)
(

p1 − p2 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)(
2p2 − p1 cos(θ1 − θ2)
ml2(1 + sin2(θ1 − θ2))

)
− 2mgl cos θ1 −mgl cos θ2.

This, after some tedious algebra, can be simplified to

H =
1

ml2(1 + sin2(θ1 − θ2))

{
p21
2

+ p22 − p1p2 cos(θ1 − θ2)
}

− 2mgl cos θ1 −mgl cos θ2.

Question: Is the Hamiltonian same as total energy for this system, i.e., H = T + V ?
Answer: We studied in the lectures that it is the case if the following two conditions are
followed: (a) Potential energy is independent of generalized velocity, which is the case
here, and (b) kinetic energy is a homogeneous function of degree 2 of the generalized
velocities, which in this case means that ∂T

∂θ̇1
θ̇1 +

∂T
∂θ̇2
θ̇2 = 2T , which can be verified to

be true here. Hence, the given Hamiltonian is the total energy of the system.

2. The Lagrangian for a system can be written as

L = aẋ2 + b
ẏ

x
+ cẋẏ + fy2ẋż + gẏ − k

√
x2 + y2,

where a, b, c, f, g, and k are constants. What is the Hamiltonian? What quantities
are conserved?
Soln: Hamiltonian will be

H = pxẋ+ pyẏ + pz ż − L,

where

px =
∂L

∂ẋ

py =
∂L

∂ẏ

pz =
∂L

∂ż
.
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Thus

px = 2aẋ+ cẏ + fy2ż (3)

py =
b

x
+ cẋ+ g (4)

pz = fy2ẋ (5)

Here, Eqs. (4) and (5) give separate expressions for ẋ in terms of momenta, so it is
better to first compute the Hamiltonian in terms of velocities, and then eliminate them
to get the momenta. With this we have

H = ẋ(2aẋ+ cẏ + fy2ż) + ẏ(
b

x
+ cẋ+ g) + ż(fy2ẋ)

− aẋ2 − b ẏ
x
− cẋẏ − fy2ẋż − gẏ + k

√
x2 + y2

= aẋ2 + cẋẏ + fy2ẋż + k
√
x2 + y2

= ẋ(2aẋ+ cẏ + fy2ż)− aẋ2 + k
√
x2 + y2

= (
pz
fy2

)px − a(
pz
fy2

)2 + k
√
x2 + y2

= (
pz
fy2

)(px − a
pz
fy2

) + k
√
x2 + y2

Above, we used Eqs. (3) and (5) to eliminate the velocities. This Hamiltonian cannot
be total energy because it is easy to verify that the velocity dependent part of it is not
a second degree homogeneous function of velocities. However, Hamiltonian is not an
explicit function of time, therefore, it is conserved. Furthermore, it does not depend
on z, i.e., z is a cyclic coordinate, therefore, pz will also be conserved.

3. A dynamical system has the Lagrangian

L = q̇21 +
q̇22

a+ bq21
+ k1q

2
1 + k2q̇1q̇2,

where a, b, k1, and k2 are constants. Find the equations of motion in the Hamiltonian
formalism.
Soln: As before

H = q̇1p1 + q̇2p2 − L,
with

p1 =
∂L

∂q̇1
= 2q̇1 + k2q̇2

p2 =
∂L

∂q̇2
=

2q̇2
a+ bq21

+ k2q̇1

These can be solved to obtain q̇1/q̇2 in terms of p1/p2

q̇1 =
{−2p1 + k2(a+ bq21)p2}
{k22(a+ bq21)− 4}

(6)

q̇2 =
{(a+ bq21)(k2p1 − 2p2)}
{k22(a+ bq21)− 4}

(7)
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But the velocity dependent part of the Lagrangian is a homogeneous function of degree
2 in the velocities, there is a part which is totally independent of the velocity. Thus,
Hamiltonian will be total energy

H = q̇21 +
q̇22

a+ bq21
+ k2q̇1q̇2 − k1q21.

With this

H =
{−2p1 + k2(a+ bq21)p2}

2

{k22(a+ bq21)− 4}2
+

1

(a+ bq21)

{(a+ bq21)(k2p1 − 2p2)}2

{k22(a+ bq21)− 4}2

+ k2
{−2p1 + k2(a+ bq21)p2}
{k22(a+ bq21)− 4}

× {(a+ bq21)(k2p1 − 2p2)}
{k22(a+ bq21)− 4}

− k1q21

=
p21

{4− k22(a+ bq21)}
+

(a+ bq21)p
2
2

{4− k22(a+ bq21)}
− k2(a+ bq21)p1p2
{4− k22(a+ bq21)}

− k1q21.

Hamilton’s equations of motion are

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi
.

Thus, we have

q̇1 =
∂H

∂p1
=

2p1 − k2(a+ bq21)p2
{4− k22(a+ bq21)}

q̇2 =
∂H

∂p2
=

(a+ bq21)(2p2 − k2p1)
{4− k22(a+ bq21)}

These equations are the same as Eqs. (6) and (7) above. The other two Hamilton’s
equations are

ṗ1 = −
∂H

∂q1

= − 2bk22q1p
2
1

{4− k22(a+ bq21)}
2 −

2bq1p
2
2

{4− k22(a+ bq21)}

− 2bk22q1(a+ bq21)p
2
2

{4− k22(a+ bq21)}
2 +

2k2bq1p1p2
{4− k22(a+ bq21)}

+
2k32b(a+ bq21)q1p1p2

{4− k22(a+ bq21)}
2 + 2k1q1,

and, because q2 is a cyclic coordinate, we have

ṗ2 = −
∂H

∂q2
= 0.
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4. A Hamiltonian of one degree of freedom has the form

H =
p2

2a
− bqpe−αt + ba

2
q2e−αt(α + be−αt) +

kq2

2
,

where a, b, α, and k are constants.

(a) Find a Lagrangian corresponding to this Hamiltonian
Soln: Here we have the reverse problem, compared to earlier ones. We have to
obtain the Lagrangian from the Hamiltonian, using the formula

L = pq̇ −H, (8)

where p will be eliminated using the Hamilton’s equation

q̇ =
∂H

∂p
=
p

a
− bqe−αt

=⇒ p = a(q̇ + bqe−αt) (9)

Using Eq. (9) in (8), we obtain the Lagrangian in terms of q and q̇

L = q̇a(q̇ + bqe−αt)− a2(q̇ + bqe−αt)2

2a
+ baq(q̇ + bqe−αt)e−αt

− ba

2
q2e−αt(α + be−αt)− kq2

2

=
aq̇2

2
− kq2

2
+ baqq̇e−αt − abα

2
q2e−αt

=
aq̇2

2
− kq2

2
+
d

dt

(
1

2
abq2e−αt

)
,

so that
L = L0 +

dF

dt
,

with L0 =
aq̇2

2
− kq2

2
and F (q, t) =

(
1
2
abq2e−αt

)
. Note that L0 is the Lagriangian

for a one-dimensional simple Harmonic oscillator of mass a, and force constant k.

(b) Is it possible to find an equivalent Lagrangian that is not explicitly dependent on
time?
Soln: Above we showed that the original Lagrangian L differs from a time inde-
pendent Lagrangian L0 by a total time derivative. Which means that L and L0

are equivalent.

(c) If you are able to solve part (b), what is the Hamiltonian corresponding the new
Lagrangian, and what is the relationship between the two Hamiltonians?
Soln: It is obvious that the Hamiltonian H0 corresponding to L0 will also be
that for 1D SHO

H0 =
P 2

2a
+

1

2
kQ2,
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where new canonical variables are P = q̇ and Q = q, so that the original Hamil-
tonian is

H = H0 − bqpe−αt +
ba

2
q2e−αt(α + be−αt).

On using the fact that p = a(q̇ + bqe−αt) = a(P + bQe−αt), we obtain

H = H0 − abQ(P + bQe−αt)e−αt +
ba

2
Q2e−αt(α + be−αt)

= H0 − abQPe−αt −
1

2
ab2Q2e−2αt +

baα

2
Q2e−αt

5. (a) The Lagrangian for a system of one degree of freedom can be written as

L =
m

2

(
q̇2 sin2 ωt+ q̇qω sin 2ωt+ q2ω2

)
.

What is the corresponding Hamiltonian? Is it conserved?
Soln: We have

p =
∂L

∂q̇
= mq̇ sin2 ωt+

1

2
mqω sin 2ωt

=⇒ q̇ =
(p− 1

2
mqω sin 2ωt)

m sin2 ωt

So that

H = pq̇ − L

=
p(p− 1

2
mqω sin 2ωt)

m sin2 ωt
− m

2

(p− 1
2
mqω sin 2ωt)2

m2 sin4 ωt

− m

2
qω

(p− 1
2
mqω sin 2ωt)

m sin2 ωt
sin 2ωt− 1

2
mω2q2

which leads to a tedious time-dependent expression

H =
p2

2m

(
1

sin2 ωt
− 1

2 sin4 ωt

)
− 1

2
pqω sin 2ωt

(
1

sin2 ωt
− 1

2 sin4 ωt

)
=

1

2
mω2q2 sin2 2ωt

(
1

2 sin2 ωt
− 1

4 sin4 ωt
− 1

)
,

which is not conserved because of its explicit time dependence.

(b) Introduce a new coordinate defined by

Q = q sinωt.
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Find the Lagrangian in terms of the new coordinate and the corresponding Hamil-
tonian. Is H conserved?
Soln: We make the substitutions in the Lagrangian

q =
Q

sinωt

q̇ =
Q̇− ωQ cotωt

sinωt
,

and after some tedious algebra we obtain the Lagrangian in terms of new variables

L =
1

2
mQ̇2 +

1

2
mω2Q2.

Clearly, the Hamiltonian in new coordinates (with P = ∂L
∂Q̇

= mQ̇) will be

H =
P 2

2m
− 1

2
mω2Q2,

which depends on canonical variables P and Q, both of which are explicitly time
dependent. Therefore, Hamiltonian will not be conserved.
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