EP 222: Classical Mechanics

Tutorial Sheet 8

This tutorial sheet contains problems related to canonical transformations, Poisson brackets etc.

1. One of the attempts at combining two sets of Hamilton's equations into one tries to take q and p as forming a complex quantity. Show directly from Hamilton's equations of motion that for a system of one degree of freedom the transformation

$$
Q=q+i p, \quad P=Q^{*}
$$

is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordinates Q^{\prime} and P^{\prime} that are related to Q, P by a change of scale only, and that are canonical?
2. Show that the transformation for a system of one degree of freedom,

$$
\begin{aligned}
& Q=q \cos \alpha-p \sin \alpha \\
& P=q \sin \alpha+p \cos \alpha,
\end{aligned}
$$

satisfies the symplectic condition for any value of the parameter α. Find a generating function for the transformation. What is the physical significance of the transformation for $\alpha=0$? For $\alpha=\pi / 2$? Does your generating function work for both the cases?
3. Show directly that the transformation

$$
Q=\log \left(\frac{1}{q} \sin p\right), \quad P=q \cot p
$$

is canonical.
4. Show directly that for a system of one degree of freedom the transformation

$$
Q=\arctan \frac{\alpha q}{p}, \quad P=\frac{\alpha q^{2}}{2}\left(1+\frac{p^{2}}{\alpha^{2} q^{2}}\right)
$$

is canonical, where α is an arbitrary constant of suitable dimensions.
5. The transformation between two sets of coordinates are

$$
\begin{aligned}
& Q=\log \left(1+q^{1 / 2} \cos p\right) \\
& P=2\left(1+q^{1 / 2} \cos p\right) q^{1 / 2} \sin p .
\end{aligned}
$$

(a) Show directly from these transformation equations that Q, P are canonical variables if q and p are.
(b) Show that the function that generates this transformation is

$$
F_{3}=-\left(e^{Q}-1\right)^{2} \tan p .
$$

6. Prove directly that the transformation

$$
\begin{array}{ll}
Q_{1}=q_{1}, & P_{1}=p_{1}-2 p_{2}, \\
Q_{2}=p_{2}, & P_{2}=-2 q_{1}-q_{2}
\end{array}
$$

is canonical and find a generating function.
7. (a) Using the fundamental Poisson brackets find the values of α and β for which the equations

$$
Q=q^{\alpha} \cos \beta p, \quad P=q^{\alpha} \sin \beta p
$$

represent a canonical transformation.
(b) For what values of α and β do these equations represent an extended canonical transformation? Find a generating function of the F_{3} form for the transformation.
8. Show by the use of Poisson brackets that for a one-dimensional harmonic oscillator, there is a constant of motion u defined as

$$
u(q, p, t)=\ln (p+i m \omega q)-i \omega t, \quad \omega=\sqrt{\frac{k}{m}}
$$

9. A system of two degrees of freedom is described by the Hamiltonian

$$
H=q_{1} p_{1}-q_{2} p_{2}-a q_{1}^{2}+b q_{2}^{2}
$$

where a and b are constants. Show that

$$
F_{1}=\frac{p_{1}-a q_{1}}{q_{2}} \quad \text { and } \quad F_{2}=q_{1} q_{2}
$$

are constants of the motion.

