EP 222: Classical Mechanics
 Tutorial Sheet 8: Solution

This tutorial sheet contains problems related to canonical transformations, Poisson brackets etc.

1. One of the attempts at combining two sets of Hamilton's equations into one tries to take q and p as forming a complex quantity. Show directly from Hamilton's equations of motion that for a system of one degree of freedom the transformation

$$
Q=q+i p, \quad P=Q^{*}
$$

is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordinates Q^{\prime} and P^{\prime} that are related to Q, P by a change of scale only, and that are canonical?
Soln: A given transformation is canonical if the Hamilton's equations are satisfied in the transformed coordinate system. Therefore, let us evaluate $\frac{\partial H}{\partial Q}$ and $\frac{\partial H}{\partial P}$

$$
\begin{aligned}
& \frac{\partial H}{\partial Q}=\frac{\partial H}{\partial q} \frac{\partial q}{\partial Q}+\frac{\partial H}{\partial p} \frac{\partial p}{\partial Q} \\
& \frac{\partial H}{\partial P}=\frac{\partial H}{\partial q} \frac{\partial q}{\partial P}+\frac{\partial H}{\partial p} \frac{\partial p}{\partial P}
\end{aligned}
$$

Using the fact that canonical variables (q, p) satisfy Hamilton's equations, we obtain

$$
\begin{aligned}
& \frac{\partial H}{\partial Q}=-\dot{p} \frac{\partial q}{\partial Q}+\dot{q} \frac{\partial p}{\partial Q} \\
& \frac{\partial H}{\partial P}=-\dot{p} \frac{\partial q}{\partial P}+\dot{q} \frac{\partial p}{\partial P}
\end{aligned}
$$

Given the fact that

$$
\begin{aligned}
q & =\frac{1}{2}(P+Q) \\
p & =\frac{i}{2}(P-Q),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{\partial q}{\partial Q}=\frac{\partial q}{\partial P}=\frac{1}{2} \\
& \frac{\partial p}{\partial Q}=-\frac{\partial p}{\partial P}=-\frac{i}{2}
\end{aligned}
$$

Substituting these above, we obtain

$$
\begin{aligned}
& \frac{\partial H}{\partial Q}=-\frac{1}{2} \dot{p}-\frac{i}{2} \dot{q}=-\frac{i}{2}(\dot{q}-i \dot{p})=-\frac{i}{2} \dot{P} \\
& \frac{\partial H}{\partial P}=-\frac{1}{2} \dot{p}+\frac{i}{2} \dot{q}=\frac{i}{2}(\dot{q}+i \dot{p})=\frac{i}{2} \dot{Q}
\end{aligned}
$$

Thus, Hamiltonian H expressed in terms of Q and P does not satisfy the Hamilton's equations, making the transformation non-canonical. Let us scale these variables to define $Q^{\prime}=\lambda Q$, and $P^{\prime}=\mu P$, so that

$$
\begin{aligned}
\frac{\partial H}{\partial Q^{\prime}} & =\frac{\partial H}{\partial Q} \frac{\partial Q}{\partial Q^{\prime}}=-\frac{i \dot{P}}{2 \lambda}=-\frac{i}{2 \lambda \mu} \dot{P}^{\prime} \\
\frac{\partial H}{\partial P^{\prime}} & =\frac{\partial H}{\partial P} \frac{\partial P}{\partial P^{\prime}}=\frac{i \dot{Q}}{2 \mu}=\frac{i}{2 \lambda \mu} \dot{Q}^{\prime} .
\end{aligned}
$$

If we choose λ and μ such that $\lambda \mu=\frac{i}{2}$, the Hamilton's equations will be satisfied in variables Q^{\prime} and P^{\prime}, and the transformation will become canonical. One choice which will achieve that is

$$
\lambda=\mu=\frac{i^{1 / 2}}{\sqrt{2}}=\frac{(1+i)}{2}
$$

2. Show that the transformation for a system of one degree of freedom,

$$
\begin{aligned}
& Q=q \cos \alpha-p \sin \alpha \\
& P=q \sin \alpha+p \cos \alpha,
\end{aligned}
$$

satisfies the symplectic condition for any value of the parameter α. Find a generating function for the transformation. What is the physical significance of the transformation for $\alpha=0$? For $\alpha=\pi / 2$? Does your generating function work for both the cases?
Soln: We will check the symplectic conditions using the order of variables

$$
\begin{aligned}
\eta & =\binom{q}{p} \\
\zeta & =\binom{Q}{P},
\end{aligned}
$$

with this

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
\end{aligned}
$$

Now we check the two symplectic conditions

$$
\begin{aligned}
M^{T} J M & =\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha \\
-\sin ^{2} \alpha-\cos ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=J
\end{aligned}
$$

Thus, symplectic condition 1 is satisfied. Similarly, it is easy to verify that the second symplectic condition $M J M^{T}=J$ is also satisfied for all values of α, making the transformation canonical. Let us try to find a generating function of the first type, i.e., $F_{1}(q, Q)$ for the transformation. The governing equations for F_{1} are

$$
\begin{aligned}
p & =\frac{\partial F_{1}}{\partial q} \\
P & =-\frac{\partial F_{1}}{\partial Q}
\end{aligned}
$$

Using the transformation equations, we can express both p and P in terms of q and Q, as follows

$$
\begin{aligned}
p & =q \cot \alpha-Q \csc \alpha \\
P & =q \sin \alpha+p \cos \alpha=q \sin \alpha+(q \cot \alpha-Q \csc \alpha) \cos \alpha \\
\Longrightarrow P & =q\left(\frac{\cos ^{2} \alpha}{\sin \alpha}+\sin \alpha\right)-Q \cot \alpha=q \csc \alpha-Q \cot \alpha .
\end{aligned}
$$

Now we integrate the generating equations

$$
\begin{aligned}
\frac{\partial F_{1}}{\partial q} & =p=q \cot \alpha-Q \csc \alpha \\
\Longrightarrow F_{1} & =\frac{q^{2}}{2} \cot \alpha-Q q \csc \alpha+f(Q) .
\end{aligned}
$$

Using this in the second generating equation for $F_{1}, \frac{\partial F_{1}}{\partial Q}=-P$, we obtain

$$
\begin{aligned}
-q \csc \alpha+\frac{d f}{d Q} & =-q \csc \alpha+Q \cot \alpha \\
\Longrightarrow \frac{d f}{d Q} & =Q \cot \alpha \\
\Longrightarrow f(Q) & =\frac{Q^{2}}{2} \cot \alpha
\end{aligned}
$$

leading to the final expression for generating function

$$
F_{1}(q, Q)=\frac{1}{2}\left(q^{2}+Q^{2}\right) \cot \alpha-Q q \csc \alpha .
$$

Let us consider $\alpha=0$, which is nothing but the identity transformation, and our F_{1} is indeterminate for that case. This is understandable because we know that this transformation is generated by $F_{2}=q P$. We would have got the correct limiting behavior for this case if we had instead used F_{2} generating function. For $\alpha=\pi / 2$, we have the interchange transformation, and our generating function becomes $F_{1}=-q Q$, which is the correct result.
3. Show directly that the transformation

$$
Q=\log \left(\frac{1}{q} \sin p\right), \quad P=q \cot p
$$

is canonical.
Soln: We need to just check one of the symplectic conditions, with

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{1}{q} & \cot p \\
\cot p & -q \csc ^{2} p
\end{array}\right) .
\end{aligned}
$$

Now we check the symplectic condition

$$
\begin{aligned}
M^{T} J M & =\left(\begin{array}{cc}
-\frac{1}{q} & \cot p \\
\cot p & -q \csc ^{2} p
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{q} & \cot p \\
\cot p & -q \csc ^{2} p
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{1}{q} & \cot p \\
\cot p & -q \csc ^{2} p
\end{array}\right)\left(\begin{array}{cc}
\cot p & -q \csc ^{2} p \\
\frac{1}{q} & -\cot p
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\cot p}{q}-\frac{\cot p}{q} & \csc ^{2} p-\cot ^{2} p \\
-\left(\csc ^{2} p-\cot ^{2} p\right) & -q \csc ^{2} p \cot p+q \csc ^{2} p \cot p
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=J
\end{aligned}
$$

Because the symplectic condition is satisfied, the transformation is canonical.
4. Show directly that for a system of one degree of freedom the transformation

$$
Q=\arctan \frac{\alpha q}{p}, \quad P=\frac{\alpha q^{2}}{2}\left(1+\frac{p^{2}}{\alpha^{2} q^{2}}\right)
$$

is canonical, where α is an arbitrary constant of suitable dimensions.
Soln: We will just check one of the symplectic conditions, with

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\alpha p}{p^{2}+\alpha^{2} q^{2}} & -\frac{\alpha q}{p^{2}+\alpha^{2} q^{2}} \\
\alpha q & \frac{p}{\alpha}
\end{array}\right) .
\end{aligned}
$$

Let us check the symplectic condition

$$
\begin{aligned}
M^{T} J M & =\left(\begin{array}{cc}
\frac{\alpha p}{p^{2}+\alpha^{2} q^{2}} & \alpha q \\
-\frac{\alpha q}{p^{2}+\alpha^{2} q^{2}} & \frac{p}{\alpha}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{\alpha p}{p^{2}+\alpha^{2} q^{2}} & -\frac{\alpha q}{p^{2}+\alpha^{2} q^{2}} \\
\alpha q & \frac{p}{\alpha}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\alpha p}{p^{2}+\alpha^{2} q^{2}} & \alpha q \\
-\frac{\alpha q}{p^{2}+\alpha^{2} q^{2}} & \frac{p}{\alpha}
\end{array}\right)\left(\begin{array}{cc}
\alpha q & p / \alpha \\
-\frac{\alpha p}{p^{2}+\alpha^{2} q^{2}} & \frac{\alpha q}{p^{2}+\alpha^{2} q^{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\alpha^{2} p q-\alpha^{2} p q}{p^{2}+\alpha^{2} q^{2}} & \frac{p^{2}+\alpha^{2} q^{2}}{p^{2}+\alpha^{2} q^{2}} \\
-\frac{p^{2}+\alpha^{2} q^{2}}{p^{2}+\alpha^{2} q^{2}} & \frac{p q-p q}{p^{2}+\alpha^{2} q^{2}}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=J .
\end{aligned}
$$

Thus the transformation is canonical.
5. The transformation between two sets of coordinates are

$$
\begin{aligned}
& Q=\log \left(1+q^{1 / 2} \cos p\right) \\
& P=2\left(1+q^{1 / 2} \cos p\right) q^{1 / 2} \sin p .
\end{aligned}
$$

(a) Show directly from these transformation equations that Q, P are canonical variables if q and p are.
Soln: We will just check one of the symplectic conditions, with

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
\frac{\partial Q}{\partial q} & \frac{\partial Q}{\partial p} \\
\frac{\partial P}{\partial q} & \frac{\partial P}{\partial p}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\cos p}{2 q^{1 / 2}\left(1+q^{1 / 2} \cos p\right)} & -\frac{q^{1 / 2} \sin p}{\left(1+q^{1 / 2} \cos p\right)} \\
\frac{\left(1+2 q^{2} \cos p\right) \sin p}{q^{1 / 2}} & 2 q^{1 / 2}\left(\cos p+q^{1 / 2} \cos 2 p\right)
\end{array}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
M^{T} J M & =\left(\begin{array}{cc}
\frac{\cos p}{2 q^{1 / 2}\left(1+q^{1 / 2} \cos p\right)} & \frac{\left(1+2 q^{1 / 2} \cos p\right) \sin p}{q^{1 / 2}} \\
-\frac{q^{1 / 2} \sin p}{\left(1+q^{1 / 2} \cos p\right)} & 2 q^{1 / 2}\left(\cos p+q^{1 / 2} \cos 2 p\right)
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \times\left(\begin{array}{cc}
\frac{\cos p}{2 q^{1 / 2}\left(1+q^{1 / 2} \cos p\right)} & -\frac{q^{1 / 2} \sin p}{\left(1+q^{1 / 2} \cos p\right)} \\
\frac{\left(1+2 q^{2} \cos p\right) \sin p}{q^{1 / 2}} & 2 q^{1 / 2}\left(\cos p+q^{1 / 2} \cos 2 p\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{\cos p}{2 q^{1 / 2}\left(1+q^{1 / 2} \cos p\right)} & \frac{\left(1+2 q^{1 / 2} \cos p\right) \sin p}{q^{1 / 2}} \\
-\frac{q^{1 / 2} \sin p}{\left(1++c^{1 / 2} \cos p\right)} & 2 q^{1 / 2}\left(\cos p+q^{1 / 2} \cos 2 p\right)
\end{array}\right) \\
& \times\left(\begin{array}{cc}
\frac{\left(1+2 q^{1 / 2} \cos p\right) \sin p}{q^{1 / 2}} & 2 q^{1 / 2}\left(\cos p+q^{1 / 2} \cos 2 p\right) \\
-\frac{\cos p}{2 q^{1 / 2}\left(1+q^{1 / 2} \cos p\right)} & \frac{q^{1 / 2} \sin p}{\left(1+q^{1 / 2} \cos p\right)}
\end{array}\right)
\end{aligned}
$$

Upon multiplying the two matrices on the right hand side, we obtain the desired result

$$
M^{T} J M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=J
$$

(b) Show that the function that generates this transformation is

$$
F_{3}=-\left(e^{Q}-1\right)^{2} \tan p
$$

Soln: Given the fact that $F_{3}=F_{3}(p, Q)$, we must first express the q and P in terms of p and Q, as shown below

$$
\begin{aligned}
Q & =\log \left(1+q^{1 / 2}\right) \cos p \\
\Longrightarrow q & =\left(e^{Q}-1\right)^{2} \sec ^{2} p \\
\Longrightarrow P & =2\left(1+q^{1 / 2} \cos p\right) q^{1 / 2} \sin p=2\left\{1+\left(e^{Q}-1\right) \sec p \cos p\right\}\left(e^{Q}-1\right) \sec p \sin p \\
\Longrightarrow P & =2 e^{Q}\left(e^{Q}-1\right) \tan p .
\end{aligned}
$$

Using the first generating equation, we have

$$
\begin{aligned}
\frac{\partial F_{3}}{\partial p} & =-q \\
\Longrightarrow \frac{\partial F_{3}}{\partial p} & =-\left(e^{Q}-1\right)^{2} \sec ^{2} p \\
F_{3} & =-\left(e^{Q}-1\right)^{2} \tan p+f(Q)
\end{aligned}
$$

where $f(Q)$ is only a function of Q. We substitute this in the second generating equation

$$
\begin{aligned}
\frac{\partial F_{3}}{\partial Q} & =-P \\
\Longrightarrow-2\left(e^{Q}-1\right) e^{Q} \tan p+\frac{d f}{d Q} & =-2 e^{Q}\left(e^{Q}-1\right) \tan p \\
\Longrightarrow \frac{d f}{d Q} & =0 \Longrightarrow f(Q)=\text { constant, which can be ignored }
\end{aligned}
$$

Thus

$$
F_{3}(p, Q)=-\left(e^{Q}-1\right)^{2} \tan p
$$

6. Prove directly that the transformation

$$
\begin{array}{ll}
Q_{1}=q_{1}, & P_{1}=p_{1}-2 p_{2} \\
Q_{2}=p_{2}, & P_{2}=-2 q_{1}-q_{2}
\end{array}
$$

is canonical and find a generating function.
Soln: We will check the symplectic conditions using the order of variables

$$
\begin{aligned}
\eta & =\left(\begin{array}{l}
q_{1} \\
q_{2} \\
p_{1} \\
p_{2}
\end{array}\right) \\
\zeta & =\left(\begin{array}{l}
Q_{1} \\
Q_{2} \\
P_{1} \\
P_{2}
\end{array}\right),
\end{aligned}
$$

with this

$$
\begin{aligned}
M & =\left(\begin{array}{llll}
\frac{\partial Q_{1}}{\partial q_{1}} & \frac{\partial Q_{1}}{\partial q_{2}} & \frac{\partial Q_{1}}{\partial p_{1}} & \frac{\partial Q_{1}}{\partial p_{2}} \\
\frac{\partial Q_{2}}{\partial q_{1}} & \frac{\partial Q_{2}}{\partial q_{2}} & \frac{\partial Q_{2}}{\partial p_{1}} & \frac{\partial Q_{2}}{p_{2}} \\
\frac{\partial P_{1}}{\partial q_{1}} & \frac{\partial P_{1}}{\partial q_{2}} & \frac{\partial P_{1}}{\partial p_{1}} & \frac{\partial P_{1}}{\partial p_{2}} \\
\frac{\partial P_{2}}{\partial q_{1}} & \frac{\partial P_{2}}{\partial q_{2}} & \frac{\partial P_{2}}{\partial p_{1}} & \frac{\partial P_{2}}{\partial p_{2}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & -2 \\
-2 & -1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

so that

$$
\left.\begin{array}{rl}
M^{T} J M & =\left(\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 \\
0 & 0 & 0 \\
1 \\
0 & 0 & 1 \\
-2 \\
-2 & -1 & 0
\end{array} 0\right.
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right)\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) .
$$

Thus, the symplectic condition is satisfied, making the transformation canonical. In order to obtain the generating function, given the structure of transformation equations, it is best to choose a function $F^{\prime}=F^{\prime}\left(p_{1}, p_{2}, Q_{1}, P_{2}, t\right)$. Note this generating function does not belong to one of the four standard types. The total generating function in this case will be $F=F^{\prime}\left(p_{1}, p_{2}, Q_{1}, P_{2}, t\right)-Q_{2} P_{2}+q_{1} p_{1}+q_{2} p_{2}$. Now, the condition for canonical transformation is, as usual

$$
\begin{aligned}
p_{1} \dot{q}_{1}+p_{2} \dot{q}_{2}-H & =P_{1} \dot{Q}_{1}+P_{2} \dot{Q}_{2}-K+\frac{d F}{d t} \\
& =P_{1} \dot{Q}_{1}+P_{2} \dot{Q}_{2}-K-P_{2} \dot{Q}_{2}-Q_{2} \dot{P}_{2} \\
& +p_{1} \dot{q}_{1}+q_{1} \dot{p}_{1}+p_{2} \dot{q}_{2}+q_{2} \dot{p}_{2} \\
& +\frac{\partial F^{\prime}}{\partial p_{1}} \dot{p}_{1}+\frac{\partial F^{\prime}}{\partial p_{2}} \dot{p}_{2}+\frac{\partial F^{\prime}}{\partial Q_{1}} \dot{Q}_{1}+\frac{\partial F^{\prime}}{\partial P_{2}} \dot{P}_{2}+\frac{\partial F^{\prime}}{\partial t}
\end{aligned}
$$

which simplifies to

$$
\left(\frac{\partial F^{\prime}}{\partial p_{1}}+q_{1}\right) \dot{p}_{1}+\left(\frac{\partial F^{\prime}}{\partial p_{2}}+q_{2}\right) \dot{p}_{2}+\left(\frac{\partial F^{\prime}}{\partial Q_{1}}+P_{1}\right) \dot{Q}_{1}+\left(\frac{\partial F^{\prime}}{\partial P_{2}}-Q_{2}\right) \dot{P}_{2}+\left(H+\frac{\partial F^{\prime}}{\partial t}-K\right)=0
$$

leading to equations

$$
\begin{align*}
q_{1} & =-\frac{\partial F^{\prime}}{\partial p_{1}} \tag{1}\\
q_{2} & =-\frac{\partial F^{\prime}}{\partial p_{2}} \tag{2}\\
P_{1} & =-\frac{\partial F^{\prime}}{\partial Q_{1}} \tag{3}\\
Q_{2} & =\frac{\partial F^{\prime}}{\partial P_{2}} \tag{4}\\
K & =H+\frac{\partial F^{\prime}}{\partial t} \tag{5}
\end{align*}
$$

We have to cast the canonical transformation equations such that we can easily inte-
grate the generating function equations. The desired equations are

$$
\begin{align*}
q_{1} & =Q_{1} \tag{6}\\
Q_{2} & =p_{2} \tag{7}\\
q_{2} & =-2 Q_{1}-P_{2} \tag{8}\\
P_{1} & =p_{1}-2 p_{2} \tag{9}
\end{align*}
$$

Using Eqs. (1) and (6)

$$
\begin{aligned}
q_{1} & =-\frac{\partial F^{\prime}}{\partial p_{1}}=Q_{1} \\
\Longrightarrow F^{\prime} & =-Q_{1} p_{1}+f\left(Q_{1}, p_{2}, P_{2}\right) .
\end{aligned}
$$

Using this in Eqs (2) and (8)

$$
\begin{aligned}
\frac{\partial f}{\partial p_{2}} & =2 Q_{1}+P_{2} \\
\Longrightarrow f & =2 Q_{1} p_{2}+P_{2} p_{2}+g\left(Q_{1}, P_{2}\right) \\
\Longrightarrow F^{\prime} & =-Q_{1} p_{1}+2 Q_{1} p_{2}+P_{2} p_{2}+g\left(Q_{1}, P_{2}\right)
\end{aligned}
$$

Using this with Eqs. (3) and (9)

$$
\begin{aligned}
-p_{1}+2 p_{2}+\frac{\partial g}{\partial Q_{1}} & =-p_{1}+2 p_{2} \\
\Longrightarrow \frac{\partial g}{\partial Q_{1}} & =0 \\
\Longrightarrow g & =h\left(P_{2}\right) \\
\Longrightarrow F^{\prime} & =-Q_{1} p_{1}+2 Q_{1} p_{2}+P_{2} p_{2}+h\left(P_{2}\right)
\end{aligned}
$$

Using this in Eqs. (4) and (7), we have

$$
\begin{aligned}
& p_{2}+\frac{d h}{d P_{2}}=p_{2} \\
& \Longrightarrow \frac{d h}{d P_{2}}=0 \Longrightarrow h=0(\text { by choice })
\end{aligned}
$$

leading to the final expression for the generating function

$$
F^{\prime}=-Q_{1} p_{1}+2 Q_{1} p_{2}+P_{2} p_{2}
$$

7. (a) Using the fundamental Poisson brackets find the values of α and β for which the equations

$$
Q=q^{\alpha} \cos \beta p, \quad P=q^{\alpha} \sin \beta p
$$

represent a canonical transformation.
Soln: The fundamental Poisson brackets should remain invariant under a canonical transformation, i.e.,

$$
\begin{aligned}
{[Q, P]_{q, p} } & =1 \\
\Longrightarrow \frac{\partial Q}{\partial q} \frac{\partial P}{\partial p}-\frac{\partial Q}{\partial p} \frac{\partial P}{\partial q} & =1 \\
\Longrightarrow\left(\alpha q^{\alpha-1} \cos \beta p\right)\left(\beta q^{\alpha} \cos \beta p\right)-\left(-\beta q^{\alpha} \sin \beta p\right)\left(\alpha q^{\alpha-1} \sin \beta p\right) & =1 \\
\Longrightarrow \alpha \beta q^{2 \alpha-1}\left(\sin ^{2} \beta p+\cos ^{2} \beta p\right) & =1 \\
\alpha \beta q^{2 \alpha-1} & =1 .
\end{aligned}
$$

This equation is satisfied if $2 \alpha-1=0 \Longrightarrow \alpha=1 / 2$ and $\beta=1 / \alpha=2$.
(b) For what values of α and β do these equations represent an extended canonical transformation? Find a generating function of the F_{3} form for the transformation. Soln: When $\alpha=1 / 2$ and β is taken to be an arbitrary constant, we have

$$
[Q, P]_{q, p}=\frac{\beta}{2},
$$

which represents an extended canonical transformation for any value of $\beta \neq 2$. Now, our transformation equations are

$$
\begin{aligned}
& Q=q^{1 / 2} \cos \beta p \\
& P=q^{1 / 2} \sin \beta p
\end{aligned}
$$

For extended canonical transformation for a system with one degree of freedom, we have

$$
\lambda(p \dot{q}-H)=P \dot{Q}-K+\frac{d F}{d t} .
$$

When $F=F_{3}(p, Q, t)+\lambda p q$, we obtain

$$
\lambda(p \dot{q}-H)=P \dot{Q}-K+\lambda \dot{p} q+\lambda p \dot{q}+\frac{\partial F_{3}}{\partial p} \dot{p}+\frac{\partial F_{3}}{\partial Q} \dot{Q}+\frac{\partial F_{3}}{\partial t},
$$

which leads to

$$
\begin{align*}
\frac{\partial F_{3}}{\partial p} & =\lambda q \tag{10}\\
\frac{\partial F_{3}}{\partial Q} & =-P \tag{11}\\
K & =\lambda H+\frac{\partial F_{3}}{\partial t} \tag{12}
\end{align*}
$$

We first express P and q in terms of p and Q, as below

$$
\begin{align*}
q & =Q^{2} \sec ^{2} \beta p \tag{13}\\
P & =Q \sec \beta p \sin \beta p=Q \tan \beta p \tag{14}
\end{align*}
$$

Combining Eqs. (10) and (13), we have

$$
\begin{aligned}
\frac{\partial F_{3}}{\partial p} & =\lambda Q^{2} \sec ^{2} \beta p \\
\Longrightarrow F_{3} & =\frac{\lambda}{\beta} Q^{2} \tan \beta p+f(Q)
\end{aligned}
$$

Using this in combination with Eqs. (11) and (14), we have

$$
\begin{aligned}
2 \frac{\lambda}{\beta} Q \tan \beta p+\frac{d f}{d Q} & =Q \tan \beta p \\
\Longrightarrow \frac{d f}{d Q} & =\left(1-\frac{2 \lambda}{\beta}\right) Q \tan \beta p \\
\Longrightarrow f(Q) & =\frac{1}{2}\left(1-\frac{2 \lambda}{\beta}\right) Q^{2} \tan \beta p
\end{aligned}
$$

leading to the final expression for the generating function

$$
F_{3}=\frac{1}{2} Q^{2} \tan \beta p
$$

8. Show by the use of Poisson brackets that for a one-dimensional harmonic oscillator, there is a constant of motion u defined as

$$
u(q, p, t)=\ln (p+i m \omega q)-i \omega t, \quad \omega=\sqrt{\frac{k}{m}}
$$

Soln: We know that a quantity u is a constant of motion provided

$$
\frac{d u}{d t}=[u, H]+\frac{\partial u}{\partial t}=0 .
$$

For the 1D simple harmonic oscillator, the Hamiltonian is

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}
$$

so that

$$
\begin{aligned}
{[u, H]+\frac{\partial u}{\partial t} } & =\left(\frac{\partial u}{\partial q} \frac{\partial H}{\partial p}-\frac{\partial u}{\partial p} \frac{\partial H}{\partial q}\right)-i \omega \\
& =\left(\frac{i m \omega}{p+i m \omega q}\right)\left(\frac{p}{m}\right)-\left(\frac{1}{p+i m \omega q}\right) m \omega^{2} q-i \omega \\
& =\frac{i \omega p-m \omega^{2} q}{p+i m \omega q}-i \omega \\
& =\frac{i \omega p-m \omega^{2} q-i \omega p+m \omega^{2} q}{p+i m \omega q} \\
& =0
\end{aligned}
$$

hence, u is a constant of motion.
9. A system of two degrees of freedom is described by the Hamiltonian

$$
H=q_{1} p_{1}-q_{2} p_{2}-a q_{1}^{2}+b q_{2}^{2}
$$

where a and b are constants. Show that

$$
F_{1}=\frac{p_{1}-a q_{1}}{q_{2}} \quad \text { and } \quad F_{2}=q_{1} q_{2}
$$

are constants of the motion.
Soln: Because both F_{1} and F_{2} have no explicit dependence on time ($\frac{\partial F_{1}}{\partial t}=\frac{\partial F_{2}}{\partial t}=0$), therefore, using the general result above, they will be constants of motion, if their Poisson brackets with the Hamiltonian vanish, i.e.,

$$
\begin{aligned}
& \frac{d F_{1}}{d t}=\left[F_{1}, H\right]=0 \\
& \frac{d F_{2}}{d t}=\left[F_{2}, H\right]=0
\end{aligned}
$$

Let us calculate these Poisson brackets

$$
\begin{aligned}
{\left[F_{1}, H\right] } & =\sum_{i=1}^{2}\left(\frac{\partial F_{1}}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F_{1}}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right) \\
& =\left\{\left(-a / q_{2}\right) q_{1}+\left(-\frac{p_{1}-a q_{1}}{q_{2}^{2}}\right)\left(-q_{2}\right)-\left(\frac{1}{q_{2}}\right)\left(p_{1}-2 a q_{1}\right)-0\right\} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[F_{2}, H\right] } & =\sum_{i=1}^{2}\left(\frac{\partial F_{2}}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F_{2}}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right) \\
& =\left\{q_{2} q_{1}+q_{1}\left(-q_{2}\right)-0-0\right\} \\
& =0
\end{aligned}
$$

Thus both F_{1} and F_{2} are constants of motion.

