
EP 222: Classical Mechanics
Tutorial Sheet 8: Solution

This tutorial sheet contains problems related to canonical transformations, Poisson brack-
ets etc.

1. One of the attempts at combining two sets of Hamilton’s equations into one tries to
take q and p as forming a complex quantity. Show directly from Hamilton’s equations
of motion that for a system of one degree of freedom the transformation

Q = q + ip, P = Q∗

is not canonical if the Hamiltonian is left unaltered. Can you find another set of
coordinates Q′ and P ′ that are related to Q, P by a change of scale only, and that are
canonical?
Soln: A given transformation is canonical if the Hamilton’s equations are satisfied in
the transformed coordinate system. Therefore, let us evaluate ∂H

∂Q
and ∂H

∂P

∂H

∂Q
=
∂H

∂q

∂q

∂Q
+
∂H

∂p

∂p

∂Q
∂H

∂P
=
∂H

∂q

∂q

∂P
+
∂H

∂p

∂p

∂P

Using the fact that canonical variables (q, p) satisfy Hamilton’s equations, we obtain

∂H

∂Q
= −ṗ ∂q

∂Q
+ q̇

∂p

∂Q
∂H

∂P
= −ṗ ∂q

∂P
+ q̇

∂p

∂P

Given the fact that

q =
1

2
(P +Q)

p =
i

2
(P −Q),

we have

∂q

∂Q
=

∂q

∂P
=

1

2
∂p

∂Q
= − ∂p

∂P
= − i

2

Substituting these above, we obtain

∂H

∂Q
= −1

2
ṗ− i

2
q̇ = − i

2
(q̇ − iṗ) = − i

2
Ṗ

∂H

∂P
= −1

2
ṗ+

i

2
q̇ =

i

2
(q̇ + iṗ) =

i

2
Q̇
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Thus, Hamiltonian H expressed in terms of Q and P does not satisfy the Hamilton’s
equations, making the transformation non-canonical. Let us scale these variables to
define Q′ = λQ, and P ′ = µP , so that

∂H

∂Q′
=
∂H

∂Q

∂Q

∂Q′
= −iṖ

2λ
= − i

2λµ
Ṗ ′

∂H

∂P ′
=
∂H

∂P

∂P

∂P ′
=
iQ̇

2µ
=

i

2λµ
Q̇′.

If we choose λ and µ such that λµ = i
2
, the Hamilton’s equations will be satisfied in

variables Q′ and P ′ , and the transformation will become canonical. One choice which
will achieve that is

λ = µ =
i1/2√
2
=

(1 + i)

2

2. Show that the transformation for a system of one degree of freedom,

Q = q cosα− p sinα
P = q sinα + p cosα,

satisfies the symplectic condition for any value of the parameter α. Find a generating
function for the transformation. What is the physical significance of the transformation
for α = 0? For α = π/2? Does your generating function work for both the cases?
Soln: We will check the symplectic conditions using the order of variables

η =

(
q
p

)
ζ =

(
Q
P

)
,

with this

M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)

=

(
cosα − sinα
sinα cosα

)
Now we check the two symplectic conditions

MTJM =

(
cosα sinα
− sinα cosα

)(
0 1
−1 0

)(
cosα − sinα
sinα cosα

)
=

(
sinα cosα− sinα cosα sin2 α + cos2 α
− sin2 α− cos2 α sinα cosα− sinα cosα

)
=

(
0 1
−1 0

)
= J
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Thus, symplectic condition 1 is satisfied. Similarly, it is easy to verify that the second
symplectic condition MJMT = J is also satisfied for all values of α, making the
transformation canonical. Let us try to find a generating function of the first type,
i.e., F1(q,Q) for the transformation. The governing equations for F1 are

p =
∂F1

∂q

P = −∂F1

∂Q

Using the transformation equations, we can express both p and P in terms of q and
Q, as follows

p = q cotα−Q cscα

P = q sinα + p cosα = q sinα + (q cotα−Q cscα) cosα

=⇒ P = q(
cos2 α

sinα
+ sinα)−Q cotα = q cscα−Q cotα.

Now we integrate the generating equations

∂F1

∂q
= p = q cotα−Q cscα

=⇒ F1 =
q2

2
cotα−Qq cscα + f(Q).

Using this in the second generating equation for F1, ∂F1

∂Q
= −P , we obtain

−q cscα +
df

dQ
= −q cscα +Q cotα

=⇒ df

dQ
= Q cotα

=⇒ f(Q) =
Q2

2
cotα,

leading to the final expression for generating function

F1(q,Q) =
1

2

(
q2 +Q2

)
cotα−Qq cscα.

Let us consider α = 0, which is nothing but the identity transformation, and our
F1 is indeterminate for that case. This is understandable because we know that this
transformation is generated by F2 = qP . We would have got the correct limiting
behavior for this case if we had instead used F2 generating function. For α = π/2, we
have the interchange transformation, and our generating function becomes F1 = −qQ,
which is the correct result.

3. Show directly that the transformation

Q = log

(
1

q
sin p

)
, P = q cot p
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is canonical.
Soln: We need to just check one of the symplectic conditions, with

M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)

=

(
−1
q

cot p

cot p −q csc2 p

)
.

Now we check the symplectic condition

MTJM =

(
−1
q

cot p

cot p −q csc2 p

)(
0 1
−1 0

)(
−1
q

cot p

cot p −q csc2 p

)
=

(
−1
q

cot p

cot p −q csc2 p

)(
cot p −q csc2 p

1
q

− cot p

)
=

( cot p
q
− cot p

q
csc2 p− cot2 p

−(csc2 p− cot2 p) −q csc2 p cot p+ q csc2 p cot p

)
=

(
0 1
−1 0

)
= J

Because the symplectic condition is satisfied, the transformation is canonical.

4. Show directly that for a system of one degree of freedom the transformation

Q = arctan
αq

p
, P =

αq2

2

(
1 +

p2

α2q2

)
is canonical, where α is an arbitrary constant of suitable dimensions.
Soln: We will just check one of the symplectic conditions, with

M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)

=

( αp
p2+α2q2

− αq
p2+α2q2

αq p
α

)
.

Let us check the symplectic condition

MTJM =

( αp
p2+α2q2

αq

− αq
p2+α2q2

p
α

)(
0 1
−1 0

)( αp
p2+α2q2

− αq
p2+α2q2

αq p
α

)
=

( αp
p2+α2q2

αq

− αq
p2+α2q2

p
α

)(
αq p/α

− αp
p2+α2q2

αq
p2+α2q2

)
=

(
α2pq−α2pq
p2+α2q2

p2+α2q2

p2+α2q2

−p2+α2q2

p2+α2q2
pq−pq
p2+α2q2

)
=

(
0 1
−1 0

)
= J.

Thus the transformation is canonical.

5. The transformation between two sets of coordinates are

Q = log(1 + q1/2 cos p),

P = 2(1 + q1/2 cos p)q1/2 sin p.
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(a) Show directly from these transformation equations that Q, P are canonical vari-
ables if q and p are.
Soln: We will just check one of the symplectic conditions, with

M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)

=

(
cos p

2q1/2(1+q1/2 cos p)
− q1/2 sin p

(1+q1/2 cos p)
(1+2q1/2 cos p) sin p

q1/2
2q1/2(cos p+ q1/2 cos 2p)

)
,

so that

MTJM =

(
cos p

2q1/2(1+q1/2 cos p)

(1+2q1/2 cos p) sin p

q1/2

− q1/2 sin p
(1+q1/2 cos p)

2q1/2(cos p+ q1/2 cos 2p)

)(
0 1
−1 0

)

×

(
cos p

2q1/2(1+q1/2 cos p)
− q1/2 sin p

(1+q1/2 cos p)
(1+2q1/2 cos p) sin p

q1/2
2q1/2(cos p+ q1/2 cos 2p)

)

=

(
cos p

2q1/2(1+q1/2 cos p)

(1+2q1/2 cos p) sin p

q1/2

− q1/2 sin p
(1+q1/2 cos p)

2q1/2(cos p+ q1/2 cos 2p)

)

×

(
(1+2q1/2 cos p) sin p

q1/2
2q1/2(cos p+ q1/2 cos 2p)

− cos p
2q1/2(1+q1/2 cos p)

q1/2 sin p
(1+q1/2 cos p)

)
Upon multiplying the two matrices on the right hand side, we obtain the desired
result

MTJM =

(
0 1
−1 0

)
= J

(b) Show that the function that generates this transformation is

F3 = −(eQ − 1)2 tan p.

Soln: Given the fact that F3 = F3(p,Q), we must first express the q and P in
terms of p and Q, as shown below

Q = log(1 + q1/2) cos p

=⇒ q = (eQ − 1)2 sec2 p

=⇒ P = 2(1 + q1/2 cos p)q1/2 sin p = 2
{
1 +

(
eQ − 1

)
sec p cos p

}
(eQ − 1) sec p sin p

=⇒ P = 2eQ(eQ − 1) tan p.

Using the first generating equation, we have
∂F3

∂p
= −q

=⇒ ∂F3

∂p
= −(eQ − 1)2 sec2 p

F3 = −(eQ − 1)2 tan p+ f(Q),

5



where f(Q) is only a function of Q. We substitute this in the second generating
equation

∂F3

∂Q
= −P

=⇒ −2(eQ − 1)eQ tan p+
df

dQ
= −2eQ(eQ − 1) tan p

=⇒ df

dQ
= 0 =⇒ f(Q) = constant, which can be ignored

Thus
F3(p,Q) = −(eQ − 1)2 tan p.

6. Prove directly that the transformation

Q1 = q1, P1 = p1 − 2p2,

Q2 = p2, P2 = −2q1 − q2

is canonical and find a generating function.
Soln: We will check the symplectic conditions using the order of variables

η =


q1
q2
p1
p2



ζ =


Q1

Q2

P1

P2

 ,

with this

M =


∂Q1

∂q1

∂Q1

∂q2

∂Q1

∂p1

∂Q1

∂p2
∂Q2

∂q1

∂Q2

∂q2

∂Q2

∂p1

∂Q2

∂p2
∂P1

∂q1

∂P1

∂q2

∂P1

∂p1

∂P1

∂p2
∂P2

∂q1

∂P2

∂q2

∂P2

∂p1

∂P2

∂p2



=


1 0 0 0
0 0 0 1
0 0 1 −2
−2 −1 0 0
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so that

MTJM =


1 0 0 −2
0 0 0 −1
0 0 1 0
0 1 −2 0




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




1 0 0 0
0 0 0 1
0 0 1 −2
−2 −1 0 0



=


1 0 0 −2
0 0 0 −1
0 0 1 0
0 1 −2 0




0 0 1 −2
−2 −1 0 0
−1 0 0 0
0 0 0 −1

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


= J.

Thus, the symplectic condition is satisfied, making the transformation canonical. In
order to obtain the generating function, given the structure of transformation equa-
tions, it is best to choose a function F ′ = F ′(p1, p2, Q1, P2, t). Note this generating
function does not belong to one of the four standard types. The total generating
function in this case will be F = F ′(p1, p2, Q1, P2, t) − Q2P2 + q1p1 + q2p2. Now, the
condition for canonical transformation is, as usual

p1q̇1 + p2q̇2 −H = P1Q̇1 + P2Q̇2 −K +
dF

dt
= P1Q̇1 + P2Q̇2 −K − P2Q̇2 −Q2Ṗ2

+ p1q̇1 + q1ṗ1 + p2q̇2 + q2ṗ2

+
∂F ′

∂p1
ṗ1 +

∂F ′

∂p2
ṗ2 +

∂F ′

∂Q1

Q̇1 +
∂F ′

∂P2

Ṗ2 +
∂F ′

∂t

which simplifies to(
∂F ′

∂p1
+ q1

)
ṗ1+

(
∂F ′

∂p2
+ q2

)
ṗ2+

(
∂F ′

∂Q1

+ P1

)
Q̇1+

(
∂F ′

∂P2

−Q2

)
Ṗ2+

(
H +

∂F ′

∂t
−K

)
= 0,

leading to equations

q1 = −
∂F ′

∂p1
(1)

q2 = −
∂F ′

∂p2
(2)

P1 = −
∂F ′

∂Q1

(3)

Q2 =
∂F ′

∂P2

(4)

K = H +
∂F ′

∂t
. (5)

We have to cast the canonical transformation equations such that we can easily inte-
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grate the generating function equations. The desired equations are

q1 = Q1 (6)
Q2 = p2 (7)
q2 = −2Q1 − P2 (8)
P1 = p1 − 2p2 (9)

Using Eqs. (1) and (6)

q1 = −
∂F ′

∂p1
= Q1

=⇒ F ′ = −Q1p1 + f(Q1, p2, P2).

Using this in Eqs (2) and (8)

∂f

∂p2
= 2Q1 + P2

=⇒ f = 2Q1p2 + P2p2 + g(Q1, P2)

=⇒ F ′ = −Q1p1 + 2Q1p2 + P2p2 + g(Q1, P2)

Using this with Eqs. (3) and (9)

−p1 + 2p2 +
∂g

∂Q1

= −p1 + 2p2

=⇒ ∂g

∂Q1

= 0

=⇒ g = h(P2)

=⇒ F ′ = −Q1p1 + 2Q1p2 + P2p2 + h(P2).

Using this in Eqs. (4) and (7), we have

p2 +
dh

dP2

= p2

=⇒ dh

dP2

= 0 =⇒ h = 0(by choice),

leading to the final expression for the generating function

F ′ = −Q1p1 + 2Q1p2 + P2p2.

7. (a) Using the fundamental Poisson brackets find the values of α and β for which the
equations

Q = qα cos βp, P = qα sin βp
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represent a canonical transformation.
Soln: The fundamental Poisson brackets should remain invariant under a canon-
ical transformation, i.e.,

[Q,P ]q,p = 1

=⇒ ∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q
= 1

=⇒ (αqα−1 cos βp)(βqα cos βp)− (−βqα sin βp)(αqα−1 sin βp) = 1

=⇒ αβq2α−1(sin2 βp+ cos2 βp) = 1

αβq2α−1 = 1.

This equation is satisfied if 2α− 1 = 0 =⇒ α = 1/2 and β = 1/α = 2.

(b) For what values of α and β do these equations represent an extended canonical
transformation? Find a generating function of the F3 form for the transformation.
Soln: When α = 1/2 and β is taken to be an arbitrary constant, we have

[Q,P ]q,p =
β

2
,

which represents an extended canonical transformation for any value of β 6= 2.
Now, our transformation equations are

Q = q1/2 cos βp

P = q1/2 sin βp

For extended canonical transformation for a system with one degree of freedom,
we have

λ(pq̇ −H) = PQ̇−K +
dF

dt
.

When F = F3(p,Q, t) + λpq, we obtain

λ(pq̇ −H) = PQ̇−K + λṗq + λpq̇ +
∂F3

∂p
ṗ+

∂F3

∂Q
Q̇+

∂F3

∂t
,

which leads to

∂F3

∂p
= λq (10)

∂F3

∂Q
= −P (11)

K = λH +
∂F3

∂t
(12)

We first express P and q in terms of p and Q, as below

q = Q2 sec2 βp (13)
P = Q sec βp sin βp = Q tan βp (14)
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Combining Eqs. (10) and (13), we have

∂F3

∂p
= λQ2 sec2 βp

=⇒ F3 =
λ

β
Q2 tan βp+ f(Q)

Using this in combination with Eqs. (11) and (14), we have

2
λ

β
Q tan βp+

df

dQ
= Q tan βp.

=⇒ df

dQ
= (1− 2λ

β
)Q tan βp

=⇒ f(Q) =
1

2
(1− 2λ

β
)Q2 tan βp,

leading to the final expression for the generating function

F3 =
1

2
Q2 tan βp

8. Show by the use of Poisson brackets that for a one-dimensional harmonic oscillator,
there is a constant of motion u defined as

u(q, p, t) = ln(p+ imωq)− iωt, ω =

√
k

m
.

Soln: We know that a quantity u is a constant of motion provided

du

dt
= [u,H] +

∂u

∂t
= 0.

For the 1D simple harmonic oscillator, the Hamiltonian is

H =
p2

2m
+

1

2
mω2q2,

so that

[u,H] +
∂u

∂t
=

(
∂u

∂q

∂H

∂p
− ∂u

∂p

∂H

∂q

)
− iω

=

(
imω

p+ imωq

)
(
p

m
)−

(
1

p+ imωq

)
mω2q − iω

=
iωp−mω2q

p+ imωq
− iω

=
iωp−mω2q − iωp+mω2q

p+ imωq

= 0,

hence, u is a constant of motion.
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9. A system of two degrees of freedom is described by the Hamiltonian

H = q1p1 − q2p2 − aq21 + bq22,

where a and b are constants. Show that

F1 =
p1 − aq1

q2
and F2 = q1q2

are constants of the motion.
Soln: Because both F1 and F2 have no explicit dependence on time (∂F1

∂t
= ∂F2

∂t
= 0),

therefore, using the general result above, they will be constants of motion, if their
Poisson brackets with the Hamiltonian vanish, i.e.,

dF1

dt
= [F1, H] = 0

dF2

dt
= [F2, H] = 0.

Let us calculate these Poisson brackets

[F1, H] =
2∑
i=1

(
∂F1

∂qi

∂H

∂pi
− ∂F1

∂pi

∂H

∂qi

)
=

{
(−a/q2)q1 + (−p1 − aq1

q22
)(−q2)− (

1

q2
)(p1 − 2aq1)− 0

}
= 0

and

[F2, H] =
2∑
i=1

(
∂F2

∂qi

∂H

∂pi
− ∂F2

∂pi

∂H

∂qi

)
= {q2q1 + q1(−q2)− 0− 0}
= 0.

Thus both F1 and F2 are constants of motion.
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