Papers in Refereed Journals (Reverse Chronology)


136. "Influence of strain and point defects on the electronic structure and related properties of (111)NiO epitaxial films," B. P. Sahu, P. Sharma, S. K. Yadav, A. Shukla, and S. Dhar, submitted for publication (April 22, 2024); available on arxiv.org (arXiv: 2404.13007)

135. "Enhanced hydrogen evolution reaction activity of nitrogen deficient hg-C3N4 quantum dot," K. Dange, V. Roondhe, and A. Shukla, submitted for publication (March 27, 2024)

134. "2D Transition-Metal Dichalcogenides based bilayer heterojunctions for efficient solar cells and photocatalytic applications," K. Dange, R. Yogi, and A. Shukla, submitted for publication (March 10, 2024)

133. "Electron-correlated study of excited states and absorption spectra of some low-symmetry graphene quantum dots," S. Das and A. Shukla, submitted for publication (March 1, 2024); available on arxiv.org (arXiv: 2402.19320)

132. "Defect Engineering in Two-Dimensional Pentagonal PdTe2: Tuning Electronic, Optical, and Magnetic Properties," P. Sharma, V. Roondhe, and A. Shukla, submitted for publication (Dec 4, 2023)

131. "Distinct contiguous versus separated triplet-pair multiexcitons in an intramolecular singlet fission chromophore," R. Chesler, P. Bhattacharyya, A. Shukla, and S. Mazumdar, submitted for publication (Oct 16, 2023); available on arxiv.org (arXiv: 2310.17818)

130. "Improvement of Performance Efficiency of UV-Photodetector based on ZnO Coated with Ga2O3 Heterojunction," S. Pandey, A. Shukla, and A. Tripathi, submitted for publication (April 22, 2023)

129. Panwar, V.; Dey, M.; Sharma, P.; Karthick, S.; Nandi, S.; Tripathi, R.; Mondal, A.; Makineni, S. K.; Shukla, A.; Singh, A.; Misra, A. "Ultrahigh photo-responsivity and detectivity in two-dimensional bismuth sulphide photodetector for Vis-NIR radiation", Small, (Accepted, Feb 2024).

128. "First-Principles Study of Penta-CN2 Quantum Dots for Efficient Hydrogen Evolution Reaction," R. Jindal, R. Yogi, and A. Shukla, Int. J. Hyd. Energy 63, 517 (2024); available on arxiv.org (arXiv: 2404.07793)

127. "Tuning the electronic and optical properties of hg−C3N4 quantum dots with edge-functionalization: A computational perspective," K. Dange, V. Roondhe, and A. Shukla, J. Mat. Chem. C 12, 1354 (2024); available on arxiv.org (arXiv: 2312.15984)

126. "Improving hydrogen evolution catalytic activity of 2D carbon allotrope biphenylene with B, N, P doping: Density functional theory investigations," M. Singh, A. Shukla, and B. Chakraborty, Int. J. Hyd. Energy 52, 569 (2024); available on arxiv.org (arXiv: 2310.00932)

125. "Lithium decorated Ѱ-graphene as a potential hydrogen storage material: density functional theory investigations", J. Dewangan, V. Mahamiya, A. Shukla, and B. Chakraborty, Int. J. Hyd. Energy 48, 37908 (2023)

124. "High Capacity Hydrogen Storage on Zirconium decorated γ-graphyne: A systematic first-principles study," M. Singh, A. Shukla, B. Chakraborty, Int. J. Hyd. Energy 48, 37834 (2023); available on arxiv.org (arXiv: 2312.16440)

123. "Defect-driven Tunable Electronic and Optical Properties of Two-Dimensional Silicon Carbide," A. Singh, V. Mahamiya, and A. Shukla,   Phys. Rev. B 108, 235311 (2023); available on arxiv.org (arXiv: 2312.10991)

122. "A first-principles study of the electronic, vibrational, and optical properties of planar SiC quantum dots," R. Jindal, V. Roondhe, and A. Shukla,  J. Phys. D: Appl. Phys. 57, 065103 (2023); available on arxiv.org (arXiv: 2311.11072)

121. "Potential reversible hydrogen storage in Li-decorated carbon allotrope PAI-graphene: A first-principles study", V. Mahamiya, A. Shukla, and B. Chakraborty, Int. J. Hyd. Energy 48, 37898 (2023); available on arxiv.org (arXiv: 2312.01144)
 
120. "Engineering the Electronic, Magnetic, and Optical properties of GaP Monolayer by Substitutional Doping: A first-principles study," K. Dange, R. Yogi, and A. Shukla, J. Phys. D: Appl. Phys. 56, 485102 (2023); available on arxiv.org (arXiv: 2309.13267)

119. "Janus functionalized boron-nitride nanosystems as a potential application for absorber layer in solar cells," B. Roondhe, V.
Roondhe, A. Shukla, S. Shukla, W. Luo, R. Ahuja, and S. Saxena, Adv. Electron. Mater. 9, 2300013 (2023)

118. "Influence of native defects on the magneto-optoelectronic properties of α-MoO3," P. Sharma, V. Mishra, and A. Shukla, J. Phys. Condens. Mattter 35, 345501 (2023); available on arxiv.org (arXiv: 2306.04978)

117. "On using non-Kekulé triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components," V. Roondhe, B. Roondhe, S. Saxena, R. Ahuja, and A. Shukla, Heliyon 9, e15388 (2023); available on arxiv.org (arXiv:2304.12170)

116. "Influence of Defects on the Valley Polarization Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition," F. Mujeeb, P. Chakrabarti, V. Mahamiya, A. Shukla, and S. Dhar, Phys. Rev. B 107, 115429 (2023)

115. "An ab initio study of catechol sensing in pristine and transition metal decorated γ-graphene," J. Dewangan, V. Mahamiya, A. Shukla, and B. Chakraborty, Nanotechnology 34, 170001 (2023)

114. "Improvement in the Performance and Efficiency on Self-Deficient CaTiO3: Towards Sustainable and Affordable New-Generation Solar Cells," S. Pandey, A. Shukla, and A. Tripathi, Materials Today Communications 35, 105575 (2023);  available on arxiv.org (arXiv:2302.05679)

113.  "Room Temperature d0 Ferromagnetism in Carbon Doped LaH3 : Insights From Density Functional Theory Simulations," P. Sharma, A. Shukla, and B. Chakraborty, J. Phys. D: App. Phys. 56, 095001 (2023); available on arxiv.org (arXiv:2302.05625)

112. "Highly Efficient Hydrogen Storage of Sc Decorated Biphenylene Monolayer near Ambient-temperature: Ab-initio Simulations", M. Singh, A. Shukla, and B. Chakraborty, Sustainable Energy & Fuels 7, 996 (2023); available on arxiv.org (arXiv:2303.02345)

111. "Quantum interference effects elucidate triplet-pair formation dynamics in intramolecular singlet-fission molecules," K.R. Parenti, R. Chesler, G. He, P. Bhattacharyya, B. Xiao, H. Huang, D. Malinowski, J. Zhang, X. Yin, A. Shukla, S. Mazumdar, M. Y. Sfeir, L. M. Campos, Nat. Chem. 15, 339 (2023) .

110. "Highly Sensitive and Self Powered Ultraviolet Photo Detector based on ZnO nanorods coated with TiO2," S. Pandey, A. Shukla, and A. Tripathi, Sensors and Actuators: A. Physical 350, 114112 (2023); available on arxiv.org (arXiv:2301.00755)

109. "Benchmarking Gaussian Basis Sets in Quantum-Chemical Calculations of Photoabsorption Spectra of Light Atomic Clusters," V. Mahamiya, P. Bhattacharyya, and A. Shukla, ACS Omega 7, 48261 (2022); available on arxiv.org (arXiv:2301.02413)

108. "Ultrahigh reversible hydrogen storage in K and Ca decorated 4-6-8 biphenylene sheet," V. Mahamiya, A. Shukla, and B. Chakraborty, Int. J. Hyd. Energy 47, 41833 (2022); available on arxiv.org (arXiv:2206.12146)

107. "Density Functional Theory Study on the Hydrogen Evolution Reaction in Haeckelite Boron Nitride Quantum Dots," R. Jindal, V. Sharma, and A. Shukla, Int. J. Hyd. Energy 47, 41783 (2022); available on arxiv.org (arXiv:2207.08781)  

106. "Role of Functionalized Graphene Quantum Dots in Hydrogen Evolution Reaction: A Density Functional Theory Study," V. Sharma, B. Roondhe, S. Saxena, and A. Shukla, Int. J. Hyd. Energy 47, 41748 (2022); available on arxiv.org (arXiv:2203.12146)

105. "Remarkable enhancement in catechol sensing by the decoration of selective transition metals in biphenylene sheet: A systematic first-principles study," V. Mahamiya, J. Dewangan, A. Shukla, and B. Chakraborty, J. Phys. D: App. Phys. 55, 505401 (2022); available on arxiv.org (arXiv:2210.16483)

104. "Influence of compressive strain on the hydrogen storage capabilities of graphene: A density functional theory study," V. Mahamiya, A. Shukla, N. Garg, and B. Chakraborty, Bull. Mat. Sci. 45, 200 (2022); available on arxiv.org (arXiv:2210.12111)

103. "Non-trivial band topology in Bi doped Lanthanum monopnictides (LaX; X = As and Sb)," Sol. St. Commun. 358, 114976 (2022)

102. "Effect of Pressure on Electrical and optical Properties of Metal Doped TiO2," S. Pandey, A. Shukla, and A. Tripathi, Opt. Mat. 133, 112875 (2022); available on arxiv.org (arXiv:2210.11687)

101. "Prediction of a Novel 2D Porous Boron Nitride Material with Excellent Electronic, Optical and Catalytic Properties,"  V. Mahamiya, A. Shukla, and B. Chakraborty, Phys. Chem. Chem. Phys. 24, 21009 (2022); available on arxiv.org (arXiv:2206.03692)

100. "Graphene Quantum Dot with Divacancy and Topological Defects: A Novel Material for Promoting Prompt and Delayed Fluorescence of Tunable Wavelengths," T. Basak, T. Basak, and A. Shukla, J. Phys. Chem. C 126, 12928 (2022); available on arxiv.org (arXiv:2208.03557)

99. "Reversible hydrogen adsorption in Ti-functionalized porous holey graphyne: Insights from first-principles calculation," J. Dewangan, V. Mahamiya, A. Shukla, and B. Chakraborty, Energy Storage 5, e391 (2023).

98. "First-principles predictions of tunable half metallicity in zigzag GaN nanoribbons with possible applications in CO detection and spintronics,"  R. Yogi, K. K. Jha, A. Shukla, and N. K. Jaiswal, J. Phys. D: Appl. Phys. 55, 405002 (2022); available on arxiv.org (arXiv:2209.03078)

97.
"An Ab‐initio study of the Y decorated 2D holey graphyne for hydrogen storage application," M. Singh, A. Shukla, and B. Chakraborty, Nanotechnology 33, 405406 (2022); available on arxiv.org (arXiv:2207.08546)

96. "Anomalous electrochemical capacitance in Mott insulator titanium sesquioxide," S. Kumar, S. Nandi, V. Mishra, A. Shukla, and A. Misra, J. Mat. Chem. A 10, 7314 (2022); available on arxiv.org (arXiv:2208.09436)

95. "Elucidating the Influence of Native Defects on Electrical and Optical Properties of Semiconducting Oxides: An Experimental and Theoretical Investigation," S. Pandey, A. Shukla, and A. Tripathi, Comp. Mat. Sci. 210, 111037 (2022); available on arxiv.org (arXiv:2112.05926)

94. "Why does a B12H12-icosahedron need two electrons to be stable: A first-principles electron-correlated investigation of B12Hn (n=6,12) clusters", P. Bhattacharyya, I. Boustani, and A. Shukla,  J. Phys. Chem. A 125, 10734 (2021); available on arxiv.org (arXiv:2109.12792)

93."High-capacity reversible hydrogen storage in scandium decorated holey graphyne: Theoretical perspectives," V. Mahamiya, A. Shukla, N. Garg, and B. Chakraborty, Int. J. Hyd. Energy 47, 7870 (2022); available on arxiv.org (arXiv:2201.09174)

92. "Exploring Yttrium Doped C24  Fullerene as High Capacity Reversible Hydrogen Storage Material: DFT Investigations," V. Mahamiya, A. Shukla, and B. Chakraborty, J. Alloys Comp. 897, 162797 (2022); available on arxiv.org (arXiv:2112.07151)

91. "Scandium decorated C24 Fullerene as High Capacity Reversible hydrogen storage material: Insight From Density Functional Theory Simulations," V. Mahamiya, A. Shukla, and B. Chakraborty, Applied Surface Science 573, 151289 (2022); available on arxiv.org (arXiv:2111.02612)

90. "Graphene quantum dots with Stone-Wales defect as a topologically tunable platform for visible-light harvesting," T. Basak, T. Basak, and A. Shukla, Phys. Rev. B 103, 235420 (2021); available on arxiv.org (arXiv:2106:08198).

89. "Molecular Switching Operation in Gate Constricted Interface of MoS2 and h-BN Heterostructure," R. Tripathi, P. Bhattacharyya, S. Nandi, A. Shukla, and A. Misra;  Applied Materials Today 23, 100999 (2021); available on arxiv.org (arXiv:2103:10839).

88. "Non-volatile reconfigurable spin logic device: parallel operations," M. Patra, A. Shukla, and S. K. Maiti, J. Phys. D: Appl. Phys. 54, 095001 (2020); available on arxiv.org  (arXiv:2101:04311)

87. "Role of defect-induced Interfacial States in Molecular Sensing: Ultrahigh Sensitive Region of Molecular Interaction,"  R. Tripathi, P. Bhattacharyya, A. Shukla, and A. Misra, Phys. Rev. Applied 14, 054014 (2020); available on arxiv.org  (arXiv:2102.01596).

86. "Effect of Oxygen Adsorption on Electrical and Thermoelectrical properties of monolayer MoS2," S. Deb, P. Bhattacharyya, P. Chakrabarti, H. Chakraborti, K. Das Gupta, A. Shukla, and S. Dhar, Phys. Rev. Applied 14, 034030 (2020); available on arxiv.org (arXiv: 2003.03544).

85. "Studies of non-trivial band topology and electron-hole compensation in YSb", P. Wadhwa, S. Kumar, A. Shukla, R. Kumar, Solid St. Commun. 321, 114022 (2020); available on arxiv.org  (arXiv:1806:00594).

84. "Signatures of non-trivial band topology in LaAs/LaBi heterostructure," P. Wadhwa, T.J. Dhilip Kumar, A. Shukla, and R. Kumar, J. Phys. Cond. Mat. 32, 395703 (2020); available on arxiv.org (arXiv: 2006.00770).

83. "Pariser-Parr-Pople Model based Configuration-Interaction Study of Linear Optical Absorption in Lower-Symmetry Polycyclic Aromatic Hydrocarbon Molecules," P. Bhattacharyya, D. K. Rai, and A. Shukla, J. Phys. Chem. C 124, 14297 (2020);  available on arxiv.org (arXiv: 2001.00793).

82. "Influence of Edge Functionalization on Electronic and Optical Properties of Armchair Phosphorene Nanoribbons: a First-Principles Study," P. Bhattacharyya, R. Chaudhari, N. Alaal, T. Rana, and A. Shukla, Electron. Struct. 2, 025001 (2020); available on arxiv.org (arXiv:1910.06863)

81. "First principles investigation of topological phase in XMR material TmSb under hydrostatic pressure," P. Wadhwa, S. Kumar, A Shukla, and R. Kumar, J. Phys. Cond. Mat 31, 335401 (2019); available on arxiv.org (arXiv:1905.00302).

80. "A Pariser-Parr-Pople Model Based Study of Optoelectronic Properties of Phenacenes," D. K. Rai and A. Shukla  submitted for publication (Oct, 2018); available on arxiv.org (arXiv:1810.03482).

81. "Systematic First Principles Configuration-Interaction Calculations of Linear Optical Absorption Spectra of Silicon Hydrides: Si2H2n (n=1-3)," P. Bhattacharyya, D. K. Rai, and A. Shukla, J. Phys. Chem. A 123, 8619 (2019); available on arxiv.org (arXiv:1807.11197).

78. "Excited States and Optical Properties of Hydrogen-Passivated Rectangular Graphenes: A Computational Study", D. K. Rai and A. Shukla, Sci. Reports 9, 7958 (2019); available on arxiv.org (arXiv:1806.07013).

77. "First principles study of structural and optical properties of B12 isomers,"
P. Bhattacharyya, I. Boustani, and A. Shukla,  J. Phys. Chem. Solids 133, 108 (2019); available on arxiv.org (arXiv:1802.01072)

76. "Electron correlation effects and two-photon absorption in diamond shaped graphene quantum dots," Tista Basak, Tushima Basak, and A. Shukla, Phys. Rev. B 98, 035401 (2018), available on arxiv.org
(arXiv:1711.11370)

75.  "Effect of edge defects on band structure of zigzag graphene nanoribbons," P. Wadhwa,  S. Kumar, T. J. Dhilip Kumar,  A. Shukla, and R. Kumar, J. App. Phys. 123, 161416 (2018);  available on arxiv.org (arXiv:1802.09831).

74. "Band gap tunability in a one-dimensional system," P. Wadhwa, S. Kumar, T. J. Dhilip Kumar, A. Shukla, and R. Kumar, 
Condens. Matter 3, 34 (2018); (arXiv:1804.02137)

73. "Tunable Optoelectronic Properties of Triply-Bonded Carbon Molecules with Linear and Graphyne Substructures," D. K. Rai, H. Chakraborty, and A. Shukla, J. Phys. Chem. C 122, 1309 (2018);  available on arxiv.org (arXiv:1709.02344).

72. "Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons," N. Alaal,  N.V. Medhekar, and A. Shukla, Phys. Chem. Chem. Phys. 20, 10345 (2018); available on arxiv.org (arXiv:1803.03055).
 
71.
"First principles electron-correlated calculations of optical absorption in magnesium clusters,"
R. L. Shinde and A. Shukla, European Physical Journal D 71, 301 (2017);  available on arxiv.org (
arXiv:1510.01673).

70.
"From half-metal to semiconductor: Electron Correlation effects in zigzag SiC nanoribbons from first principles,"  N. Alaal, V. Loganathan, N.V. Medhekar, and A. Shukla, Phys. Rev. Applied 7, 064009 (2017); available on arxiv.org (arXiv:1701.05971)
 

69. "
Photoabsorption in Sodium Clusters: First-Principles Configuration Interaction Calculations," P. K. Priya, D. K. Rai, and A. Shukla, Eur. Phys. J. D 71, 116 (2017); available on arxiv.org  (arXiv: 1606.08306)

68.
"Origin of multiple band gap values in single width nanoribbons," Deepika, S. Kumar, A. Shukla, and R. Kumar, Scientific Reports 6, 36168 (2016); available on arxiv.org (arXiv:1610.02858) .

67. 
"Optical signatures of electric field driven magnetic phase transitions in graphene quantum dots,"  T. Basak and A. Shukla, Phys. Rev. B 93, 235432 (2016); available  on arxiv.org (arXiv:1511.03094).

66. "First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons," N. Alaal, V. Loganathan, N.V. Medhekar, and A. Shukla, J. Phys. D 49, 105306 (2016);  available on arxiv.org (arXiv:1506.07103).

65.
"Theory of linear optical absorption in diamond shaped graphene quantum dots,", T. Basak, H. Chakraborty, and A. Shukla, Phys. Rev. B 92, 205404 (2015); available  on arxiv.org (arXiv:1501.06041).

64. "Edge Configurational Effect on Band Gaps in Graphene Nanoribbons," Deepika, T. J. Dhilip Kumar, A. Shukla, and R. Kumar, Phys. Rev. B 91, 115428 (2015); available on arxiv.org  (arXiv:1408.5184)

63. "Theory of Singlet Fission in Polyenes, Acene Crystals and Covalently Linked Acene Dimers," K. Aryanpour, A. Shukla, and S. Mazumdar, J. Phys. Chem. C 119, 6966 (2015); available on arxiv.org (arXiv:1504.00634) .

62
.
"
Theory of Triplet Optical Absorption in Oligoacenes: From Naphthalene to Heptacene," H. Chakraborty and A. Shukla, J. Chem. Phys. 141, 164301 (2014); available on arxiv.org (arXiv:1406.6954) .

61. "Large-scale first principles configuration interaction calculations of optical absorption in aluminum clusters, "  R. Shinde and A. Shukla, Phys. Chem. Chem. Phys. 16, 20714 (2014); available on arxiv.org ( arXiv:1303.2511)

60
.
"
Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry," K. Aryanpour, A. Shukla, and S. Mazumdar, J. Chem. Phys. 140, 104301 (2014);  available on arxiv.org (arXiv:1311.0567) .

59. "Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations,"  K. Aryanpour, A. Roberts, A. Sandhu, R. Rathore, A. Shukla, and S. Mazumdar, J. Phys. Chem. C 118, 3331 (2014); available on arxiv.org (arXiv:1311.0567).

58.
"
Pariser-Parr-Pople Model based Investigation of Ground and Low-Lying Excited States of Long Acenes," H. Chakraborty and A. Shukla, J. Phys. Chem. A 117, 14220 (2013); available on arxiv.org ( arXiv:1304.0075)

57.  "A Pariser-Parr-Pople Model Hamiltonian based approach to the electronic structure and optical properties of graphene nanostructures,"  K. Gundra and A. Shukla, invited chapter, pages 199-227, in Topological Modeling of Nanostructures and Extended Systems, A. R. Ashrafi et al. (eds.), Carbon Materials: Chemistry and Physics Volume 7, F. Cataldo and P. Milani (Series Eds), Springer Science (2013) (Springer Link)


56. " Optical absorption in boron clusters B6 and B6+: A first principles configuration interaction approach,"  R. Shinde and A. Shukla,
Eur. Phy. J. D 67, 98 (2013); available on arxiv.org ( arXiv:1208.6536 )

55. "
Large-scale first principles configuration interaction calculations of optical absorption in boron clusters," R. Shinde and A. Shukla, Nano Life 2, 1240004 (2012). Invited article in the special issue titled "Theoretical Simulation and Computational Design of Nanomaterials and Biomaterials"; available on arxiv.org ( arXiv:1202.6205 )

54. "A Fortran 90 Hartree-Fock program for one-dimensional periodic pi-conjugated systems using Pariser-Parr-Pople model," G. Kondayya and A. Shukla, Comp. Phys. Comm. 183, 677 (2012); available on arxiv.org ( arXiv:1108.5896 )

53. "Band Structure and Optical Absorption in Multilayer Armchair Graphene Nanoribbons: A Pariser-Parr-Pople Model Study," G. Kondayya and A. Shukla, Phys. Rev. B 84, 075442 (2011); available on arxiv.org ( arXiv:1103.6157 )

52. "Unit cell dependence of optical matrix elements in tight-binding theory: The case of zigzag graphene nanoribbons," G. Kondayya and A. Shukla, Physica B 406, 3538 (2011); available on arxiv.org ( arXiv:1007.1106 )

51. "Theory of the electro-optical properties of graphene nanoribbons," G. Kondayya and A. Shukla, Phys. Rev. B 83, 075413 (2011); available on arxiv.org ( arXiv:1008.3538 )

50. "Nature of Optical Excitations in Hydrogenated Aluminium Cluster Al4H6: A Theoretical Study," S. Sahu and A. Shukla (unpublished); available on arxiv.org ( arXiv:1001.0635v2 )

49. "Probing Aromaticity of Borozene Through Optical and Dielectric Response: A Theoretical Study," S. Sahu and A. Shukla, Nanoscale Research Letters 5, 714 (2010);
available on arxiv.org ( arXiv:0912.4157v1 )

48. "
A General Purpose Fortran 90 program for conjugated systems using Pariser-Parr-Popel Model," P. Sony and A. Shukla, Comp. Phys. Comm. 181, 821 (2010);
available on arxiv.org ( arXiv:0912.4576v1 )

47. 
"Energetics and electronic structure of phenyl-disubstituted polyacetylene: A first-principles study,"  P. Sony, A. Shukla, and C. Ambrosch-Draxl, Phys. Rev. B 82, 035213 (2010) (
arXiv:1007.1557 )

46. "Theory of Linear Optical Absorption in B12 Clusters: Role of Geometry," S. Sahu and A. Shukla (unpublished); available on arxiv.org ( arXiv:0912.4328v1)

45. "Large-scale correlated study of excited state absorptions in naphthalene and anthracene," P. Sony and A. Shukla, J. Chem. Phys. 131, 014302 (2009);
available on arxiv.org ( arXiv:0908.0493v1)

44. "Fortran 90 implementation of the Hartree-Fock approach within the CNDO/2 and INDO models," S. Sahu and A. Shukla, Comp. Phys. Comm. 180, 724 (2009);
available on arxiv.org (arXiv:0812.3690v1)
 43. "Photophysics of charge-transfer excitons in thin films of $pi$-conjugated polymers," Z. Wang, S. Mazumdar, and A. Shukla, Phys. Rev B 78, 235109 (2008); available on arxiv.org (arXiv:0809.1240v1)

42. "Ab initio Wannier-function-based correlated  calculations of Born effective charges of  crystalline  Li2O and LiCl,"  P. Sony and A. Shukla, Phys. Rev. B 77, 075130 (2008); available on arxiv.org ( arXiv:0801.3308v1 )

41. "A Fortran 90 program to solve Hartree-Fock equations for interacting spin-1/2 Fermions confined in harmonic potentials," H. K. Pal and A. Shukla, Comp. Phys. Commun. 179, 267 (2008); available on arxiv.org (arXiv:0807.3444v1).

40. ``Kinetically-balanced Gaussian Basis Set Approach to Relativistic Compton Profiles of Atoms," P. Jaiswal and A. Shukla, Phys. Rev. A 75,  022504 (2007); available on arxiv.org ( arXiv:physics/0703205v1).

39.``Large-scale correlated calculations of linear optical absorption and low-lying excited states of polyacenes: Pariser-Parr-Pople Hamiltonian", P. Sony and A. Shukla, Phys. Rev. B 75, 155208 (2007); available on arxiv.org  (arXiv:0704.3754v1).

38.``A basis-set based Fortran program to solve the Gross-Pitaevskii Equation for dilute Bose gases in harmonic and anharmonic traps, R. P. Tiwari and A. Shukla, Comp. Phys. Commun. 174, 966 (2006); available on arxiv.org ( arXiv:cond-mat/0603732v1)

37.``Ab initio real-space Hartree-Fock and correlated approach to optical dielectric constants of crystalline insulators,'' P. Sony and A. Shukla, Phys. Rev. B 73, 165106 (2006); available on arxiv.org (arXiv:cond-mat/0604192v1)

36. ``A correlated study of linear optical absorption in tetracene and pentacene,'' P. Sony and A. Shukla, Synth. Met. 155, 316 (2005).

35. ``Photoinduced absorption and nonlinear optical properties of disubstituted polyacetylenes: Theory,'' A. Shukla and P. Sony, Synth. Met. 155, 368 (2005).

34. ``Photoinduced absorption in disubstituted polyacetylenes: Comparison of theory with experiments,'' P.Sony and A. Shukla, Phys. Rev. B 71, 165204 (2005); available on arxiv.org (arXiv:cond-mat/0502163v1)

33. ``Ab initio Wannier-function-based many-body approach to Born charge of insulators,'' P.Sony and A. Shukla, Phys. Rev. B 70, 241103 (Rapid Comm.) (2004); available on arxiv.org ( arXiv:cond-mat/0411215v1)

32. ``Theory of nonlinear optical properties of phenyl-substituted polyacetylenes,'' A. Shukla, Phys. Rev. B 69, 165218 (2004); available on arxiv.org ( arXiv:cond-mat/0403228v1)

31. ``Ultrafast excited state absorption and charge separation in phenylene-based conjugated polymers,'' A. Shukla, H. Ghosh, and S. Mazumdar, Synth. Met. 141, 59 (2004).

30. ``Theory of two-photon absorption in poly(diphenyl)polyacetylenes'' A. Shukla, Chem. Phys. 300, 177 (2004); available on arxiv.org ( arXiv:cond-mat/0402542v1)

29. ``Theory of excited state absorptions in phenylene-based pi-conjugated polymers,'' A. Shukla, H. Ghosh, and S. Mazumdar, Phys. Rev. B 67, 245203 (2003); available on arxiv.org ( arXiv:cond-mat/0302398v1)

28. ``Ab initio many-body calculations of static dipole polarizabilities of linear carbon chains and chain-like boron clusters'', A. Abdurahman, A. Shukla, and G. Seifert, Phys. Rev. B 66, 155423 (2002); available on arxiv.org ( arXiv:cond-mat/0211522v1)

27. ``Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains'' A. Shukla, Phys. Rev. B 65, 125204 (2002); available on arxiv.org ( arXiv:cond-mat/0201071v1)

26. ``Ab initio many-body calculations on infinite carbon and boron-nitrogen chains,'' A. Abdurahman, A. Shukla, and M. Dolg, Phys. Rev. B 65, 115106 (2002); available on arxiv.org ( arXiv:cond-mat/0201070v1)

25. ``Interband two-photon transition in Mott insulator as a new mechanism for
       ultrafast optical nonlinearity," M. Ashida, T. Ogasawara, N. Motoyama,
        H. Eisaki, S. Uchida, Y. Taguchi, Y. Tokura, M. Kuwata-Gonokami,
        H. Ghosh, A. Shukla, and S. Mazumdar, Int. Jr. Mod. Phys. B, 15, 3628 (2001).

24. ``Electron correlations and photophysics of phenyl-substituted polyacetylenes,'' H. Ghosh, S. Mazumdar, and A. Shukla, Int. Jr. Mod. Phys. B, 15, 2793 (2001).

23. `` Photophysics of Phenyl-Substituted Polyacetylenes, Theory'', A. Shukla, H. Ghosh, and S. Mazumdar, Synth. Met. 116, 87 (2001).

22. ``Electron correlation induced transverse delocalization and longitudinal confinement in excited states of phenyl-substituted polyacetylenes," H. Ghosh, A. Shukla, and S. Mazumdar, Phys. Rev. B 62, 12763 (2000); available on arxiv.org (arXiv:cond-mat/0006171v2)
21. ``Ultrafast optical nonlinearity in quasi-one-dimensional Mott insulator Sr$_2$CuO$_3$,'' T. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, and N. Kuwata-Gonokami, Phys. Rev. Lett. 85, 2204 (2000).

20. ``Correlated ground-state ab initio calculations of polymethineimine,'' A. Abdurahman, A. Shukla, and M. Dolg, Chem. Phys. 257, 301 (2000).

19. ``Ab initio Hartree-Fock Born effective charges of LiH, LiF, LiCl, NaF, and NaCl,'' A. Shukla, Phys. Rev. B 61, 13277 (2000); available on arxiv.org (arXiv:cond-mat/0002285v1)

18. ``Ab initio treatment of electron correlations in polymers: lithium hydride chain and beryllium hydride polymer,'' A. Abdurahman, A. Shukla, and M. Dolg, J. Chem. Phys. 112, 4801 (2000); available on arxiv.org ( arXiv:cond-mat/0002124v1)

17. ``Designing emmissive conjugated polymers with small optical gaps: A step towards organic polymeric infrared lasers,'' A. Shukla and S. Mazumdar, Phys. Rev. Lett. 83, 3944 (1999); available on arxiv.org ( arXiv:cond-mat/9910198v1)

16. ``Wave-function-based correlated ab initio calculations on crystalline solids,'' A. Shukla, M. Dolg, P. Fulde, and H. Stoll, Phys. Rev. B. 60, 5211 (1999); available on arxiv.org ( arXiv:cond-mat/9905335v1)

15. ``Ab initio Hartree-Fock computation of electronic static structure factor of crystalline insulators: benchmark results on LiF,'' A. Shukla, Phys. Rev. B 60, 4539 (1999); available on arxiv.org ( arXiv:cond-mat/9905345v1)

14. ``Ab initio study of structural and cohesive properties of polymers: Polyiminoborane and polyaminoborane.", A. Abdurahman, M. Albrecht, A. Shukla, and M. Dolg, J. Chem. Phys. 110, 8819 (1999).

13. ``A Wannier Function based ab initio Hartree-Fock study of polyethylene,'' A. Shukla, M. Dolg, and H. Stoll, Chem. Phys. Letts. 294, 126 (1998); available on arxiv.org ( arXiv:cond-mat/9807287v1)

12. ``Wannier Function based ab initio Hartree-Fock approach extended to polymers: applications to LiH chain and trans-polyacetylene,'' A. Shukla, M. Dolg, and H. Stoll, Phys. Rev. B 58, 4325 (1998);  available on arxiv.org ( arXiv:cond-mat/9806204v1)

11. ``Towards a quantum-chemical description of crystalline insulators: A Wannier-function-based Hartree-Fock study of Li$_{2}$O and Na$_{2}$O'', A. Shukla, M. Dolg, P. Fulde and, H. Stoll, J. Chem. Phys. 108, 8521 (1998);  available on arxiv.org ( arXiv:cond-mat/9803380v1)

10. ``A Hartree-Fock ab initio band structure calculation employing Wannier-type orbitals'', M. Albrecht, A. Shukla, M. Dolg, H. Stoll and, P. Fulde, Chem. Phys. Letts. 285, 174 (1998); available on arxiv.org ( arXiv:cond-mat/9803379v1)

9. ``Obtaining Wannier Functions of a Crystalline Insulator within a Hartree-Fock approach: Applications to LiF and LiCl'', A. Shukla, M. Dolg, P. Fulde and, H. Stoll, Phys. Rev. B 57, 1471 (1998); available on arxiv.org ( arXiv:cond-mat/9710250v1)

8. ``Bose-Einstein Condensation in a Trap: the case of a dense condensate,'' K. Ziegler and A. Shukla, Phys. Rev. A 56, 1438 (1997); available on arxiv.org ( arXiv:cond-mat/9701038v1)

7. ``Spin-Orbit Coupling in Variational Quantum Monte Carlo Calculations,'' H.-J. Flad, M. Dolg and A. Shukla, Phys. Rev. A 55, 4183 (1997).

6. ``Relativistic Configuration Interaction Study of Valence Electron Correlation effects on the Fine-Structure Splitting in the Pb Isoelectronic Series,'' A. Shukla, M. Dolg, H.-J. Flad, A. Banerjee and A.K. Mohanty, Phys. Rev. A 55, 3433 (1997).

5. ``An ab initio embedded-cluster approach to electronic structure calculations on perfect solids: a Hartree-Fock study of lithium hydride,'' A. Shukla, M. Dolg, H. Stoll and P. Fulde, Chem. Phys. Letters 262, 213 (1996).

4. ``Application of the coupled-cluster approach to the electric dipole moment of atoms and molecules due to parity and time reversal violation," A. Shukla, B.P. Das and D. Mukherjee, Phys. Rev. A 50, 2096 (1994).

3. ``A relativistic many-body calculation of the electric dipole moment of atomic rubidium due to parity and time reversal violation," A. Shukla, B.P. Das and J. Andriessen, Phys. Rev. A 50, 1155 (1994).

2. ``The relativistic valence-shell effective Hamiltonian method for atomic and molecular systems," A. Shukla and A. Banerjee, J. Chem. Phys. 100, 3695 (1994).

1. ``Determination of the Branching Ratio of the Decay $\pi^{0} \rightarrow
                        e^{+}e{-}$,'' A. Deshpande et al., Phys. Rev. Letts. 71, 27 (1993).