EP 307: Quantum Mechanics I Tutorial Sheet 4

Problems in this tutorial sheet deal with the mathematical methods of quantum mechanics as discussed in chapter 2 of the book by Cohen-Tannoudji et al. Read complement B of chapter II to revise some important concepts related to linear operators, their functions, and commutators.

1. $\left|\phi_{n}\right\rangle$ are the eigenstates of a Hermitian operator H, which could be the Hamiltonian of a physical system. Assume that the states $\left|\phi_{n}\right\rangle$ form a discrete orthonormal basis. The operator $U(m, n)$ is defined by

$$
U(m, n)=\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right| .
$$

(a) Calculate the Hermitian conjugate $U^{\dagger}(m, n)$, of $U(m, n)$
(b) Calculate the commutator $[H, U(m, n)]$
(c) Prove that $U(m, n) U^{\dagger}(p, q)=\delta_{n q} U(m, p)$
(d) Calculate $\operatorname{Tr}(U(m, n))$
(e) Let A be an operator, with matrix elements $A_{m n}=\left\langle\phi_{m}\right| A\left|\phi_{n}\right\rangle$. Prove that $A=\sum_{m, n} A_{m n} U(m, n)$
(f) Show that $A_{p q}=\operatorname{Tr}\left(A U^{\dagger}(p, q)\right)$
2. In a two-dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle,|2\rangle\}$, is written as

$$
\sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) Is σ_{y} Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized expansion in terms of the $\{|1\rangle,|2\rangle\}$ basis.
(b) Calculate the matrices which represent projectors on to these eigenvectors. Then verify that they satisfy the orthogonality and closure relations.
3. Let K be the operator defined by $K=|\phi\rangle\langle\psi|$, where $|\phi\rangle,|\psi\rangle \in \mathcal{E}$.
(a) Under what conditions is K Hermitian?
(b) Calculate K^{2}. Under what conditions is K a projector?
(c) Show that K can always be written in the form $K=\lambda P_{1} P_{2}$, where λ is a constant to be calculated and P_{1} and P_{2} are projectors.
4. The σ_{x} matrix is defined by

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Prove the relation

$$
e^{i \alpha \sigma_{x}}=I \cos \alpha+i \sigma_{x} \sin \alpha,
$$

where I is the 2×2 identity matrix and α is a number.
5. Prove the following properties of commutators
(a) $[A, B]=-[B, A]$
(b) $[A, B]^{\dagger}=\left[B^{\dagger}, A^{\dagger}\right]$
(c) $[A, B+C]=[A, B]+[A, C]$
(d) $[A, B C]=[A, B] C+B[A, C]$
(e) $[A B, C]=A[B, C]+[A, C] B$
(f) $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$
6. Consider the Hamiltonian H of a particle in a one-dimensional problem defined by

$$
H=\frac{P^{2}}{2 m}+V(X)
$$

where X and P are the position and momentum operators which satisfy $[X, P]=i \hbar$. Assume that H has a discrete spectrum described by the eigenvalue equation $H\left|\phi_{n}\right\rangle=$ $E_{n}\left|\phi_{n}\right\rangle$.
(a) by evaluating $\left\langle\phi_{n}\right|[X, H]\left|\phi_{n^{\prime}}\right\rangle$, prove that

$$
\left\langle\phi_{n}\right| P\left|\phi_{n^{\prime}}\right\rangle=\alpha\left\langle\phi_{n}\right| X\left|\phi_{n^{\prime}}\right\rangle,
$$

and determine the value of α
(b) From this, deduce, using the closure relation, the equation

$$
\left.\sum_{n^{\prime}}\left(E_{n}-E_{n^{\prime}}\right)^{2}\left|\left\langle\phi_{n}\right| X\right| \phi_{n^{\prime}}\right\rangle\left.\right|^{2}=\frac{\hbar^{2}}{m^{2}}\left\langle\phi_{n}\right| P^{2}\left|\phi_{n}\right\rangle
$$

7. Let H be the Hamiltonian of a physical system with eigenspectrum defined by $H\left|\phi_{n}\right\rangle=$ $E_{n}\left|\phi_{n}\right\rangle$.
(a) For an arbitrary operator A prove that $\left\langle\phi_{n}\right|[A, H]\left|\phi_{n}\right\rangle=0$.
(b) If the Hamiltonian in question represents a particle of mass m confined along the x direction with

$$
H=\frac{P^{2}}{2 m}+V(X)
$$

i. In terms of P, X, and $V(X)$, compute the commutators: $[H, P],[H, X]$, and $[H, X P]$.
ii. Show that $\left\langle\phi_{n}\right| P\left|\phi_{n}\right\rangle=0$.
iii. Establish a relation between $K=\left\langle\phi_{n}\right| \frac{P^{2}}{2 m}\left|\phi_{n}\right\rangle$ and $\left\langle\phi_{n}\right| X \frac{d V}{d X}\left|\phi_{n}\right\rangle$. How is K related to $\left\langle\phi_{n}\right| V(X)\left|\phi_{n}\right\rangle$, when $V(X)=V_{0} X^{\lambda}\left(\lambda=2,4,6, \ldots ; V_{0}>0\right)$.
8. Using the relation $\langle x \mid p\rangle=(2 \pi \hbar)^{-1 / 2} e^{i p x / \hbar}$, find the expression $\langle x| X P|\psi\rangle$ and $\langle x| P X|\psi\rangle$ in terms of $\psi(x)$. Can these results be found directly by using the fact that in the $|x\rangle$ representation, P acts like $\frac{\hbar}{i} \frac{d}{d x}$?
9. Consider a three-dimensional state space spanned by the orthonormal basis kets $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle$, and $\left|u_{3}\right\rangle$. Consider two operators L_{z} and S defined by

$$
\begin{array}{lll}
L_{z}\left|u_{1}\right\rangle=\left|u_{1}\right\rangle & L_{z}\left|u_{2}\right\rangle=0 & L_{z}\left|u_{3}\right\rangle=-\left|u_{3}\right\rangle \\
S\left|u_{1}\right\rangle=\left|u_{3}\right\rangle & S\left|u_{2}\right\rangle=\left|u_{2}\right\rangle & S\left|u_{3}\right\rangle=\left|u_{1}\right\rangle,
\end{array}
$$

(a) Obtain the matrix representations of operators L_{z}, L_{z}^{2}, S, and S^{2} with respect to this basis. Are these operators observables?
(b) Give the form of the most general matrix which represents an operator which commutes with L_{z}. Same question for L_{z}^{2} and S^{2}.
(c) Do L_{z}^{2} and S form a C.S.C.O.? Give a basis of common eigenvectors.

