EP 307: Quantum Mechanics I Tutorial Sheet 4

Problems in this tutorial sheet deal with the mathematical methods of quantum mechanics as discussed in chapter 2 of the book by Cohen-Tannoudji *et al.* Read complement B of chapter II to revise some important concepts related to linear operators, their functions, and commutators.

1. $|\phi_n\rangle$ are the eigenstates of a Hermitian operator H, which could be the Hamiltonian of a physical system. Assume that the states $|\phi_n\rangle$ form a discrete orthonormal basis. The operator U(m, n) is defined by

$$U(m,n) = |\phi_m\rangle\langle\phi_n|.$$

- (a) Calculate the Hermitian conjugate $U^{\dagger}(m, n)$, of U(m, n)
- (b) Calculate the commutator [H, U(m, n)]
- (c) Prove that $U(m,n)U^{\dagger}(p,q) = \delta_{nq}U(m,p)$
- (d) Calculate Tr(U(m, n))
- (e) Let A be an operator, with matrix elements $A_{mn} = \langle \phi_m | A | \phi_n \rangle$. Prove that $A = \sum_{m,n} A_{mn} U(m, n)$
- (f) Show that $A_{pq} = \text{Tr}(AU^{\dagger}(p,q))$
- 2. In a two-dimensional vector space, consider the operator whose matrix, in an orthonormal basis $\{|1\rangle, |2\rangle\}$, is written as

$$\sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right).$$

- (a) Is σ_y Hermitian? Calculate its eigenvalues and eigenvectors (giving their normalized expansion in terms of the $\{|1\rangle, |2\rangle\}$ basis.
- (b) Calculate the matrices which represent projectors on to these eigenvectors. Then verify that they satisfy the orthogonality and closure relations.
- 3. Let K be the operator defined by $K = |\phi\rangle \langle \psi|$, where $|\phi\rangle$, $|\psi\rangle \in \mathcal{E}$.
 - (a) Under what conditions is K Hermitian?
 - (b) Calculate K^2 . Under what conditions is K a projector?
 - (c) Show that K can always be written in the form $K = \lambda P_1 P_2$, where λ is a constant to be calculated and P_1 and P_2 are projectors.
- 4. The σ_x matrix is defined by

$$\sigma_x = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right).$$

Prove the relation

$$e^{i\alpha\sigma_x} = I\cos\alpha + i\sigma_x\sin\alpha,$$

where I is the 2×2 identity matrix and α is a number.

- 5. Prove the following properties of commutators
 - (a) [A, B] = -[B, A]
 - (b) $[A, B]^{\dagger} = [B^{\dagger}, A^{\dagger}]$
 - (c) [A, B + C] = [A, B] + [A, C]
 - (d) [A, BC] = [A, B]C + B[A, C]
 - (e) [AB, C] = A[B, C] + [A, C]B
 - (f) [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0
- 6. Consider the Hamiltonian H of a particle in a one-dimensional problem defined by

$$H = \frac{P^2}{2m} + V(X),$$

where X and P are the position and momentum operators which satisfy $[X, P] = i\hbar$. Assume that H has a discrete spectrum described by the eigenvalue equation $H|\phi_n\rangle = E_n |\phi_n\rangle$.

(a) by evaluating $\langle \phi_n | [X, H] | \phi_{n'} \rangle$, prove that

$$\langle \phi_n | P | \phi_{n'} \rangle = \alpha \langle \phi_n | X | \phi_{n'} \rangle,$$

and determine the value of α

(b) From this, deduce, using the closure relation, the equation

$$\sum_{n'} (E_n - E_{n'})^2 |\langle \phi_n | X | \phi_{n'} \rangle|^2 = \frac{\hbar^2}{m^2} \langle \phi_n | P^2 | \phi_n \rangle$$

- 7. Let *H* be the Hamiltonian of a physical system with eigenspectrum defined by $H|\phi_n\rangle = E_n |\phi_n\rangle$.
 - (a) For an arbitrary operator A prove that $\langle \phi_n | [A, H] | \phi_n \rangle = 0$.
 - (b) If the Hamiltonian in question represents a particle of mass m confined along the x direction with

$$H = \frac{P^2}{2m} + V(X),$$

- i. In terms of P, X, and V(X), compute the commutators: [H, P], [H, X], and [H, XP].
- ii. Show that $\langle \phi_n | P | \phi_n \rangle = 0$.
- iii. Establish a relation between $K = \langle \phi_n | \frac{P^2}{2m} | \phi_n \rangle$ and $\langle \phi_n | X \frac{dV}{dX} | \phi_n \rangle$. How is K related to $\langle \phi_n | V(X) | \phi_n \rangle$, when $V(X) = V_0 X^{\lambda}$ ($\lambda = 2, 4, 6, \ldots; V_0 > 0$).
- 8. Using the relation $\langle x|p \rangle = (2\pi\hbar)^{-1/2} e^{ipx/\hbar}$, find the expression $\langle x|XP|\psi \rangle$ and $\langle x|PX|\psi \rangle$ in terms of $\psi(x)$. Can these results be found directly by using the fact that in the $|x\rangle$ representation, P acts like $\frac{\hbar}{i} \frac{d}{dx}$?

9. Consider a three-dimensional state space spanned by the orthonormal basis kets $|u_1\rangle$, $|u_2\rangle$, and $|u_3\rangle$. Consider two operators L_z and S defined by

$$\begin{array}{ll} L_z |u_1\rangle = |u_1\rangle & L_z |u_2\rangle = 0 & L_z |u_3\rangle = -|u_3\rangle \\ S |u_1\rangle = |u_3\rangle & S |u_2\rangle = |u_2\rangle & S |u_3\rangle = |u_1\rangle, \end{array}$$

- (a) Obtain the matrix representations of operators L_z , L_z^2 , S, and S^2 with respect to this basis. Are these operators observables?
- (b) Give the form of the most general matrix which represents an operator which commutes with L_z . Same question for L_z^2 and S^2 .
- (c) Do L_z^2 and S form a C.S.C.O.? Give a basis of common eigenvectors.