PH403: Quantum Mechanics I
 \section*{Tutorial Sheet 5}

Problems in this tutorial sheet deal with the postulates of quantum mechanics as discussed in chapter 3 of the book by Cohen-Tannoudji et al.

1. In a one-dimensional problem, consider a particle whose wave function is

$$
\psi(x)=N \frac{e^{i p_{0} x / \hbar}}{\sqrt{x^{2}+a^{2}}}
$$

where a and p_{0} are real constants and N is a normalization coefficient.
(a) Determine N so that $\psi(x)$ is normalized.
(b) The position of the particle is measured. What is the probability of finding a result between $-\frac{a}{\sqrt{3}}$ and $\frac{a}{\sqrt{3}}$?
(c) Calculate $\langle p\rangle$ the expectation value of the momentum of the particle corresponding to $\psi(x)$.
2. Consider, in a one-dimensional problem, a particle of mass m whose wave function at time t is $\psi(x, t)$.
(a) At time t, the distance d of this particle from the origin is measured. Write, as a function of $\psi(x, t)$, the probability $P\left(d_{0}\right)$ of finding a result greater than a given length d_{0}. What are the limits of $P\left(d_{0}\right)$ when $d_{0} \rightarrow 0$ and $d_{0} \rightarrow \infty$?
(b) Instead of performing the measurement of question a, one measures the velocity v of the particle at time t. Express, as a function of $\psi(x, t)$, the probability of finding a result greater than a given value v_{0}.
3. Consider the three-dimensional wave function

$$
\psi(x, y, z)=N e^{-\left\{\frac{|x|}{2 a}+\frac{|y|}{2 b}+\frac{|z|}{2 c}\right\}}
$$

where a, b, and c are three positive lengths.
(a) Calculate the constant N which normalizes ψ.
(b) Calculate the probability that a measurement of X will yield a result included between 0 and a.
(c) Calculate the probability that a simultaneous measurement of Y and Z will yield results included between $-b$ and b, and $-c$ and c.
(d) Calculate the probability that a measurement of the momentum will yield a result included in the element $d p_{x} d p_{y} d p_{z}$ centered at the point $p_{x}=p_{y}=0 ; p_{z}=\hbar / c$.
4. Consider two canonically conjugate operators Q and P, which satisfy the commutation relation $[Q, P]=i \hbar$. Our aim here is to prove that $\Delta P \Delta Q \geq \hbar / 2$ by using the following sequence of arguments
(a) By using the fact that the norm of the ket $|\phi\rangle=(Q+i \lambda P)|\psi\rangle$ is non-negative $\left(|\psi\rangle\right.$ is an arbitrary ket) argue that $\left\langle P^{2}\right\rangle\left\langle Q^{2}\right\rangle \geq \frac{\hbar^{2}}{4}$
(b) Define $P^{\prime}=P-\langle P\rangle$ and $Q^{\prime}=Q-\langle Q\rangle$ and compute the commutator [P^{\prime}, Q^{\prime}].
(c) Then argue from the results of part (a) that $\left\langle P^{\prime 2}\right\rangle\left\langle Q^{\prime 2}\right\rangle \geq \frac{\hbar^{2}}{4}$ leading to the result in question.
5. In a one-dimensional problem, consider a particle of potential energy $V(X)=-f X$, where f is a positive constant.
(a) Write Ehrenfest's theorem for the mean values of the position X and the momentum P of the particle. Integrate these equations; compare with the classical motion.
(b) Show that the root-mean-square deviation ΔP does not vary over time.
(c) Write the Schrödinger equation in the $\{|p\rangle\}$ representation. Deduce from it a relation between $\frac{\partial}{\partial t}|\langle p \mid \psi(t)\rangle|^{2}$ and $\frac{\partial}{\partial p}|\langle p \mid \psi(t)\rangle|^{2}$. Integrate the equation thus obtained; give a physical interpretation.
6. Earlier we solved the problem of a particle in a box defined by the potential $V(x)$ which satisfies

$$
V(x)=\left\{\begin{array}{l}
\infty \text { for } x<0 \text { and } x>a \\
0 \text { otherwise }
\end{array}\right.
$$

Assume that eigenstates of the Hamiltonian H are $\left|\phi_{n}\right\rangle$ with eigenvalues $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$. The state of the particle at the instant $t=0$ is

$$
|\psi(0)\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle+a_{3}\left|\phi_{3}\right\rangle+a_{4}\left|\phi_{4}\right\rangle .
$$

(a) What is the probability, when the energy of the particle in the state $|\psi(0)\rangle$ is measured, of finding a value smaller than $\frac{3 \pi^{2} \hbar^{2}}{m a^{2}}$?
(b) What is the expectation value and what is the root-mean-square deviation of the energy of the particle in the state $|\psi(0)\rangle$?
(c) Calculate the state vector $|\psi(t)\rangle$ at the instant t. Do the results found in (a) and (b) at the instant $t=0$ remain valid at an arbitrary time t ?
(d) When the energy is measured, the result $\frac{8 \pi^{2} \hbar^{2}}{m a^{2}}$ is found. After the measurement, what is the state of the system? What is the result if the energy is measured again?
7. Consider a physical system whose state space, which is three-dimensional, is spanned by the orthonormal basis formed by the three kets $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle$, and $\left|u_{3}\right\rangle$. In this basis, the Hamiltonian operator H of the system and the two observables A and B are written

$$
H=\hbar \omega_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad A=a\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad B=b\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where ω_{0}, a, and b are positive real constants. At $t=0$, the system is described by the state ket

$$
|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle+\frac{1}{2}\left|u_{2}\right\rangle+\frac{1}{2}\left|u_{3}\right\rangle .
$$

(a) At time $t=0$, the energy of the system is measured. What values can be found, and with what probabilities? Calculate for the system in $|\psi(0)\rangle$, the mean value $\langle H\rangle$ and the root-mean square deviation ΔH.
(b) Instead of measuring H at time $t=0$, one measures A; what results can be found, and with what probabilities? What is the state vector immediately after the measurement?
(c) Calculate the state vector $|\psi(t)\rangle$ of the system at time t ?
(d) Calculate the expectation values $\langle A\rangle(t)$ and $\langle B\rangle(t)$ of A and B at time t. What comments can be made?
(e) What results are obtained if the observable A is measured at time t ? Same question for B. Interpret your results.

