## PH403: Quantum Mechanics I <br> Tutorial Sheet 6

Problems in this tutorial sheet deal with the Stern-Gerlach experiment and the related problems as discussed in chapter 4 of the book by Cohen-Tannoudji et al.

1. Consider a spin- $1 / 2$ particle of magnetic moment $\mathbf{M}=\gamma \mathbf{S}$. The spin state space is spanned by the basis of the $|+\rangle$ and $|-\rangle$, eigenvectors of $S_{z}$ with eigenvalues $\hbar / 2$ and $-\hbar / 2$. At the time $t=0$, the state of the system is $|\psi(0)\rangle=|+\rangle$.
(a) If the observable $S_{x}$ is measured at time $t=0$, what results can be found and with what probabilities?
(b) Instead of performing the preceding measurement, we let the system evolve under the influence of a magnetic field of magnitude $B_{0}$, parallel to the $y$-axis. Calculate in the $\{|+\rangle,|-\rangle\}$ basis the state of the system at time $t$.
(c) At this time $t$, we measure the observables $S_{x}, S_{y}$, and $S_{z}$. What values can we find, and with what probabilities? What relation must exist between $B_{0}$ and $t$ for the final result of one of the measurements to be certain? Give a physical interpretation of this condition.
2. Consider a spin- $1 / 2$ particle, as in the previous exercise.
(a) At time $t=0$, we measure $S_{y}$ and find $+\hbar / 2$. What is the state vector $|\psi(0)\rangle$ immediately after the measurement?
(b) Immediately after this measurement, we apply a uniform time-dependent field along the $z$-axis. The spin Hamiltonian $H(t)$ is then written as

$$
H(t)=\omega_{0}(t) S_{z}
$$

Assume that $\omega_{0}(t)$ is zero for $t<0$ and $t>T$, and linearly increases from 0 to $\omega_{0}$ when $0 \leq t \leq T$ ( $T$ is a given parameter whose dimensions are those of time). Show that at time $t$ the state vector can be written

$$
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left\{e^{i \theta(t)}|+\rangle+i e^{-i \theta(t)}|-\rangle\right\}
$$

where $\theta(t)$ is a real function of $t$ which you have to compute.
(c) At a time $t=\tau>T$, we measure $S_{y}$. What results can we find, and with what probabilities? Determine the relation which must exist between $\omega_{0}$ and $T$ in order for us to be sure of the result. Give a physical interpretation.
3. Consider a spin- $1 / 2$ particle placed in a magnetic field $\mathbf{B}_{0}=\frac{1}{\sqrt{2}}\left(B_{0}, 0, B_{0}\right)$. Notation is the same as in exercise 1.
(a) Calculate the matrix representing, in the $\{|+\rangle,|-\rangle\}$ basis, the Hamiltonian operator $H$, of the system.
(b) Calculate the eigenvalues and eigenvectors of $H$.
(c) The system at time $t=0$ is in the state $|-\rangle$. What values can be found if the energy is measured, and with what probabilities?
(d) Calculate the state vector $|\psi(t)\rangle$ at time $t$. At this instant, $S_{x}$ is measured: what is the mean value of the results that can be obtained? Give a geometrical interpretation.
4. Consider a spin- $1 / 2$, of magnetic moment $\mathbf{M}=\gamma \mathbf{S}$, placed in a magnetic field $\mathbf{B}_{0}$ of components $B_{x}=-\omega_{x} / \gamma, B_{y}=-\omega_{y} / \gamma, B_{z}=-\omega_{z} / \gamma$. We set $\omega_{0}=-\gamma\left|\mathbf{B}_{0}\right|$.
(a) Show that the time evolution operator of this spin is

$$
U(t, 0)=e^{-i M t}
$$

where $M$ is given by

$$
M=\frac{1}{\hbar}\left\{\omega_{x} S_{x}+\omega_{y} S_{y}+\omega_{z} S_{z}\right\}
$$

Calculate the matrix representation of $M$ in the $\{|+\rangle,|-\rangle\}$ basis and show that

$$
M^{2}=\frac{1}{4}\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right)=\left(\frac{\omega_{0}}{2}\right)^{2}
$$

(b) Put the time evolution operator into the form

$$
U(t, 0)=\cos \left(\frac{\omega_{0} t}{2}\right)-\frac{2 i}{\omega_{0}} M \sin \left(\frac{\omega_{0} t}{2}\right)
$$

(c) Consider a spin which at time $t=0$ is in the state $|\psi(0)\rangle=|+\rangle$. Show that the probability $P_{++}(t)$ of finding it in state $|+\rangle$ at time $t$ is

$$
\left.P_{++}(t)=|\langle+| U(t, 0)|+\right\rangle\left.\right|^{2}
$$

and derive the relation

$$
P_{++}(t)=1-\frac{\omega_{x}^{2}+\omega_{y}^{2}}{\omega_{0}^{2}} \sin ^{2}\left(\frac{\omega_{0} t}{2}\right)
$$

5. Consider a two-level system with orthonormal basis vectors $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ and the Hamiltonian $H=H_{0}+W$ defined by

$$
H_{0}\left|\phi_{i}\right\rangle=E_{i}\left|\phi_{i}\right\rangle \quad(i=1,2)
$$

and

$$
W\left|\phi_{1}\right\rangle=W_{21}\left|\phi_{2}\right\rangle ; \quad W\left|\phi_{2}\right\rangle=W_{12}\left|\phi_{1}\right\rangle
$$

where $W_{j i}$ 's are the matrix elements of the operator $W$, and $W_{12}=W_{21}^{*}$.
(a) Construct the matrix representing the Hamiltonian $H$ in the given basis.
(b) Obtain the eigenvalues and eigenvectors of $H$.
(c) Consider a ket which at time $t=0$ is given by $|\psi(0)\rangle=\left|\phi_{1}\right\rangle$. Compute the expression for the probability $P_{12}(t)$ that at a later time $t$, the system will be in state $\left|\phi_{2}\right\rangle$. This probability is defined by $P_{12}(t)=\left|\left\langle\phi_{2} \mid \psi(t)\right\rangle\right|^{2}$. Plot $P_{12}(t)$ as a function of time $t$.

