PH403: Quantum Mechanics I
 Tutorial Sheet 7

Problems in this tutorial sheet deal with the quantum mechanics of a simple-harmonic oscillator as discussed in chapter 5 of the book by Cohen-Tannoudji et al.

1. Obtain and integrate the equations of motion for the expectation values of the X and P operators for a simple-harmonic oscillator of mass m and frequency ω.
2. Consider a harmonic oscillator of mass m and angular frequency ω. At time $t=0$, the state of this oscillator is given by

$$
|\psi(0)\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle,
$$

where $\left|\phi_{n}\right\rangle$ are stationary states with energies $(n+1 / 2) \hbar \omega$.
(a) What is the probability P that a measurement of the oscillator's energy performed at an arbitrary time $t>0$, will yield a result greater than $2 \hbar \omega$? When $P=0$, what are the nonzero coefficients c_{n} ?
(b) From now on assume that only c_{0} and c_{1} are different from zero. Write the normalization coefficient for $|\psi(0)\rangle$ and the mean value $\langle H\rangle$ of the energy in terms of c_{0} and c_{1}. With the additional requirement $\langle H\rangle=\hbar \omega$, calculate $\left|c_{0}\right|^{2}$ and $\left|c_{1}\right|^{2}$.
(c) As the normalized state vector $|\psi(0)\rangle$ is defined only to within a global phase factor, we fix this factor by choosing c_{0} to be real and positive. We set $c_{1}=\left|c_{1}\right| e^{i \theta}$. We assume that $\langle H\rangle=\hbar \omega$ and that

$$
\langle X\rangle=\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}} .
$$

Calculate θ.
3. Two particles of the same mass m, with positions X_{1} and X_{2} and momenta P_{1} and P_{2}, are subject to the same potential

$$
V(X)=\frac{1}{2} m \omega^{2} X^{2} .
$$

The two particles do not interact with each other.
(a) Show that the Hamiltonian H of the two-particle system can be written as

$$
H=H_{1}+H_{2},
$$

where H_{1} / H_{2} act on the state space of particle $1 / 2$.
(b) Calculate the energies of the two-particle system, their degree of degeneracy, and the corresponding wave functions.
(c) Do H, H_{1}, and H_{2} form a C.S.C.O? We denote by $\left|\Phi_{n 1, n 2}\right\rangle$ the eigenvectors common to H_{1} and H_{2}. Write the orthonormalization and closure relation for the states $\left|\Phi_{n 1, n 2}\right\rangle$.
(d) Consider a system which, at $t=0$, is in the state

$$
|\psi(0)\rangle=\frac{1}{2}\left(\left|\Phi_{0,0}\right\rangle+\left|\Phi_{1,0}\right\rangle+\left|\Phi_{0,1}\right\rangle+\left|\Phi_{1,1}\right\rangle\right) .
$$

What results can be obtained, and with what probabilities, if at this time one measures: (i) the total energy of the system, and (ii) energy of particle 1?
4. This is a continuation of the previous problem and, therefore, uses the same notations. Assume that at $t=0$, the system is in state $|\psi(0)\rangle$ given in the previous exercise. At $t=0$, one measures the total energy H and finds the result $2 \hbar \omega$.
(a) Calculate the mean values (expectation values) of the position, the momentum, and the energy of particles 1 and 2 at an arbitrary $t>0$.
(b) At $t>0$, one measures the energy of particle 1 . What results can be found, and with what probabilities? Same question for a measurement of the position of particle 1. Plot the curve for the corresponding probability density.
5. We know that the Hamiltonian of a simple-harmonic oscillator can be written as $H=$ $\hbar \omega\left(a^{\dagger} a+\frac{1}{2}\right)$, and its time evolution operator can be written as $U(t, 0)=e^{-i H t}$.
(a) Consider the operators

$$
\begin{aligned}
\tilde{a}(t) & =U^{\dagger}(t, 0) a U(t, 0) \\
\tilde{a}^{\dagger}(t) & =U^{\dagger}(t, 0) a^{\dagger} U(t, 0)
\end{aligned}
$$

By calculating their actions on the kets $\left|\phi_{n}\right\rangle$, find the expressions for $\tilde{a}(t)$ and $\tilde{a}^{\dagger}(t)$ in terms of a and a^{\dagger}.
(b) Calculate the operators $\tilde{X}(t)$ and $\tilde{P}(t)$ defined by

$$
\begin{aligned}
\tilde{X}(t) & =U^{\dagger}(t, 0) X U(t, 0) \\
\tilde{P}(t) & =U^{\dagger}(t, 0) P U(t, 0) .
\end{aligned}
$$

How can the relations so obtained be interpreted?
(c) Show that $U^{\dagger}\left(\frac{\pi}{2 \omega}, 0\right)|x\rangle$ is an eigenvector of P and specify its eigenvalue. Similarly, establish that $U^{\dagger}\left(\frac{\pi}{2 \omega}, 0\right)|p\rangle$ is an eigenvector of X.
6. Consider the operator $D(\alpha)=e^{\alpha a^{\dagger}-\alpha^{*} a}$
(a) Prove that

$$
D(\alpha)=e^{-|\alpha|^{2} / 2} e^{\alpha a^{\dagger}} e^{-\alpha^{*} a} .
$$

Hint: you should use Glauber's Formula

$$
e^{A} e^{B}=e^{A+B} e^{\frac{1}{2}[A, B]},
$$

which is valid when both the operators A and B commute with their commutator $[A, B]$.
(b) Prove that

$$
D(\alpha)|0\rangle=|\alpha\rangle,
$$

where $|0\rangle$ represents the harmonic oscillator eigenstate with $n=0$, and $|\alpha\rangle$ represents the coherent state.
(c) Prove that

$$
\left|\left\langle\alpha \mid \alpha^{\prime}\right\rangle\right|^{2}=e^{-\left|\alpha-\alpha^{\prime}\right|^{2}}
$$

This shows that coherent states form a non-orthogonal set of vectors.

