PH 422: Quantum Mechanics II
 Tutorial Sheet 1

This tutorial sheet contains problems related to the addition of angular momenta for quantum mechanical particles.

1. Verify the values of the following C-G coefficients
(a) $\langle j 1 j 0 \mid j 1 j j\rangle=\sqrt{\frac{j}{j+1}}$
(b) $\langle j 2 j 0 \mid j 2 j j\rangle=\sqrt{\frac{j(2 j-1)}{(j+1)(2 j+3)}}$
2. Compute the following C-G coefficients
(a) $\left\langle j_{1}, 1 / 2, m-1 / 2,1 / 2 \mid j_{1} 1 / 2, j_{1} \pm 1 / 2, m\right\rangle= \pm \sqrt{\frac{j_{1} \pm m+1 / 2}{2 j_{1}+1}}$
(b) $\left\langle j_{1}, 1 / 2, m+1 / 2,-1 / 2 \mid j_{1}, 1 / 2, j_{1} \pm 1 / 2, m\right\rangle=\sqrt{\frac{j_{1} \mp m+1 / 2}{2 j_{1}+1}}$
3. Show that the eigenvectors of total angular momentum \mathbf{J}, obtained by coupling the orbital angular momentum (l) and the spin angular momentum $(s=1 / 2)$ of an electron can be written as

$$
\mathcal{Y}_{l}^{j m}=\mathcal{Y}_{l}^{l \pm 1 / 2, m}=\frac{1}{\sqrt{2 l+1}}\binom{ \pm \sqrt{l \pm m+\frac{1}{2}} Y_{l}^{m-1 / 2}(\theta, \phi)}{\sqrt{l \mp m+\frac{1}{2}} Y_{l}^{m+1 / 2}(\theta, \phi)} .
$$

Also verify that $\mathcal{Y}_{l}^{j m}$ is an eigenfunction of \mathbf{J}^{2} operator, where $\mathbf{J}=\mathbf{L}+\mathbf{S}$.
4. Suppose you have two spin $\frac{1}{2}$ particles, with their individual spin operators $\mathbf{S}_{\mathbf{1}}$ and \mathbf{S}_{2}. Obtain the eigenstates of \mathbf{S}^{2} and \mathbf{S}_{z} operators, where $\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}$, by the following two approaches:
(a) Using the C-G coefficients
(b) By constructing the \mathbf{S}^{2} operator in the uncoupled basis, and diagonalizing it.
5. Calculate the C-G coefficients needed to couple the two angular momenta $j_{1}=3 / 2$ and $j_{2}=1$ to the possible j values, and express the coupled states $\left|j_{1} j_{2} j m\right\rangle$ in terms of the uncoupled state $\left|j_{1} j_{2} m_{1} m_{2}\right\rangle$.

