PH 422: Quantum Mechanics II
 Tutorial Sheet 2

This tutorial sheet contains problems related to the Clebsch-Gordon series, tensor operators, and the Wigner-Eckart theorem.

1. By use of the unitary condition for the D matrices and the orthogonality condition of the CGCs, derive from the Clebsch-Gordon series the result

$$
\sum_{m_{2}^{\prime}}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j_{3} m_{3}\right\rangle D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(R)=\sum_{m_{1} m} D_{m_{3} m}^{\left(j_{3}\right)}(R)\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j_{3} m\right\rangle D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right) *}(R)
$$

2. Prove

$$
D_{m m^{\prime}}^{(j)}(R)=\sum_{m_{1}, m_{1}^{\prime}, m_{2}, m_{2}^{\prime}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle D_{m_{1} m_{1}^{\prime}}^{\left(j_{1}\right)}(R) D_{m_{2}, m_{2}^{\prime}}^{\left(j_{2}\right)}(R)\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m^{\prime}\right\rangle .
$$

Verify that this result holds for $j_{1}=1 / 2, j_{2}=1, j=3 / 2$, when R denotes a rotation by an angle θ about the z axis.
3. Using the spherical harmonics $Y_{l}^{m}(\theta, \phi)$, establish the connection between components of a Cartesian tensor of rank 2 defined as $T_{i j}=x_{i} x_{j}$, and the corresponding spherical tensor $T_{k=2}^{q}$. Here x_{i} denotes the i-th Cartesian component of the position vector.
4. If $|n l m\rangle$ denotes an eigenfunction of the hydrogen atom (without considering its spin), and we define

$$
\chi=\left\langle n^{\prime}=3, l^{\prime}=2, m^{\prime}=2\right| x y|n=3, l=0, m=0\rangle .
$$

Compute, as a function of χ, the matrix elements

$$
\left\langle n^{\prime}=3, l^{\prime}=2, m^{\prime}\right| T_{i j}|n=3, l=0, m=0\rangle
$$

where $T_{i j}$ is defined in the previous problem.
5. Directly compute the matrix elements

$$
\left\langle j=1, m^{\prime}\right| J^{q}|j=1, m\rangle
$$

where J^{q} denotes the q-th spherical component of the angular momentum operator. Verify that these matrix elements satisfy Wigner-Eckart theorem, and deduce the corresponding reduced matrix elements from them.
6. Evaluate

$$
\sum_{m=-j}^{j}\left|D_{m m^{\prime}}^{(j)}(\beta)\right|^{2} m
$$

for any j (integer or half-integer), then check your answer for $j=\frac{1}{2}$.
7. Prove the following results for $j=1$, using the corresponding representation of J_{y}
(a)

$$
e^{-\frac{i J_{y} \beta}{\hbar}}=1-i\left(\frac{J_{y}}{\hbar}\right) \sin \beta-\left(\frac{J_{y}}{\hbar}\right)^{2}(1-\cos \beta)
$$

(b)

$$
D^{(j=1)}(\beta)=\left(\begin{array}{ccc}
\left(\frac{1}{2}\right)(1+\cos \beta) & -\left(\frac{1}{\sqrt{2}}\right) \sin \beta & \left(\frac{1}{2}\right)(1-\cos \beta) \\
\left(\frac{1}{\sqrt{2}}\right) \sin \beta & \cos \beta & -\left(\frac{1}{\sqrt{2}}\right) \sin \beta \\
\left(\frac{1}{2}\right)(1-\cos \beta) & \left(\frac{1}{\sqrt{2}}\right) \sin \beta & \left(\frac{1}{2}\right)(1+\cos \beta)
\end{array}\right)
$$

8. Consider a spherical tensor of rank 1 (that is, a vector)

$$
V_{1}^{ \pm 1}=\mp \frac{V_{x} \pm i V_{y}}{\sqrt{2}}, \quad V_{1}^{0}=V_{z} .
$$

Using the expression for $D^{(j=1)}(\beta)$ given in the previous problem, evaluate

$$
\sum_{q^{\prime}} D_{q q^{\prime}}^{(1)}(\beta) V_{1}^{q^{\prime}},
$$

and show that your results are just what you expect from the transformation properties of $V_{x, y, z}$, under rotation about the y-axis.
9. (a) Construct a spherical tensor of rank 1 out of two different vectors $\mathbf{U}=\left(U_{x}, U_{y}, U_{z}\right)$ and $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$. Explicitly write $T_{1}^{ \pm 1,0}$, in terms of $U_{x, y, z}$ and $V_{x, y, z}$.
(b) Construct a spherical tensor of rank 2 out of two different vectors \mathbf{U} and \mathbf{V}. Write down explicitly $T_{2}^{ \pm 2, \pm 1,0}$, in terms of $U_{x, y, z}$ and $V_{x, y, z}$.
10. Consider a spinless particle bound to a fixed center by a central force potential.
(a) Relate, as much as possible, the matrix elements

$$
\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \mp \frac{1}{\sqrt{2}}(x \pm i y)|n, l, m\rangle \quad \text { and }\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| z|n, l, m\rangle
$$

using only the Wigner-Eckart theorem. Make sure to state under what conditions the matrix elements are nonvanishing.
(b) Do the same problem using the wave function $\psi_{n l m}(\mathbf{r})=R_{n l}(r) Y_{l}^{m}(\theta, \phi)$.
11. (a) Write $x y, x z$, and $\left(x^{2}-y^{2}\right)$ as components of a spherical (irreducible) tensor of rank 2.
(b) The expectation value

$$
Q \equiv e\langle\alpha, j, m=j|\left(3 z^{2}-r^{2}\right)|\alpha, j, m=j\rangle
$$

is known as quadrupole moment. Evaluate

$$
e\left\langle\alpha, j, m^{\prime}\right|\left(x^{2}-y^{2}\right)|\alpha, j, m=j\rangle,
$$

(where $m^{\prime}=j, j-1, j-2, \ldots$) in terms of Q and appropriate C-G coefficients.
12. The magnetic moment of an atom is defined as

$$
\boldsymbol{\mu}=-\frac{e}{2 m c}\left(g_{L} \mathbf{L}+g_{S} \mathbf{S}\right),
$$

where e is the electronic charge, m is the electronic mass, c is the speed of light, \mathbf{L} is the total orbital angular momentum operator for the atom, \mathbf{S} is total spin angular momentum operator of the atom, and g_{L} and g_{S} are, respectively, orbital and spin Lande g factors.
(a) Argue that the expectation value components $\left\langle\mu_{i}\right\rangle=\langle\alpha j j| \mu_{i}|\alpha j j\rangle$, are proportional to each other
(b) Using the projection theorem, prove that if $g_{L}=1$ and $g_{S}=2, \mu=\left\langle\mu_{z}\right\rangle$ is given by

$$
\mu=-\frac{e \hbar}{2 m c} g_{J} J
$$

where

$$
g_{J}=\left\{1+\frac{J(J+1)-L(L+1)+S(S+1)}{2 J(J+1)}\right\},
$$

and S, L, and J, respectively denote the total spin, orbital angular momentum, and total angular momentum of the atom.

