
PH 422: Quantum Mechanics II

Tutorial Sheet 4

This tutorial sheet contains problems related to the perturbation theory for time-independent
Schrödinger equation.

1. Assume that a particle of mass m, is carrying out simple harmonic motion in the x
direction.

(a) If the particle carries a charge q, and it is exposed to an electric �eld E0 in the x
direction, obtain its exact eigenvalues and eigenvectors. In particular, show that
the exact eigenket for the n-th level |ψn〉 is related to that of the unperturbed

state |ψ(0)
n 〉, by |ψn〉 = e−iqE0p/mω2~|ψ(0)

n 〉, where p is the momentum operator.

(b) Assuming that the electric �eld is small, treat the extra term in the Hamiltonian
V = −qE0x as a small perturbation, to calculate:

i. corrections to the energy eigenvalues up to second order in perturbation the-
ory

ii. corrections to the wave functions up to �rst order in perturbation theory.

(c) Expand your exact results in leading orders in E0, and compare them with the
results obtained in part (b).
Soln: Done in the lectures

2. Consider a hydrogen atom in its 1s ground state. If we apply an electric �eld of
strength E0 in the z direction on the hydrogen atom, make an estimate of the �rst
non-vanishing order of correction in the energy of the 1s state, due to the presence of
the electric �eld. Using this, estimate the static polarizability α of the atom, employing
the formula

α = −
(
∂2∆E

∂E2
0

)
E0=0

,

where ∆E is the shift in the energy of the atom, due to the presence of the external
electric �eld. This e�ect is called quadratic stark e�ect.
Soln: Done in the lectures

3. Consider a 1D SHO with particle mass m, and frequency ω, with the Hamiltonian
H0 = p2

2m
+ 1

2
mω2x2. To this Hamiltonian we add a perturbing term V = 1

2
εmω2x2,

where ε� 1.

(a) Solve this problem exactly, and expand the energies to the second order in ε, and
wave functions to the �rst order in ε.

(b) Calculate, using the perturbation theory, the energy corrections to the second
order in ε, and wave functions to �rst order in ε, treating V as a perturbation. For
the wave function, perform the calculations only for the ground state. Compare
your results to those obtained in part (b).
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Soln: Here

H0 =
p2

2m
+

1

2
mω2x2 (1)

and the perturbation term

V =
1

2
εmω2x2 (2)

⇒ H = H0 + V =
p2

2m
+

1

2
mω2(1 + ε)x2

⇒ H =
p2

2m
+

1

2
mω′2x2 (3)

where
ω′ = ω

√
1 + ε (4)

Obviously the exact eigenvalues and eigenfuntions of H

H|ψn〉 = En|ψn〉 (5)

are

En =

(
n+

1

2

)
~ω′

and
ψn(x) = ψ(0)

n (x, ω → ω′) (6)

Let us expand En and ψn(x) in power of ε to compare it with the perturbation
treatment. Clearly

ω′ = ω
√

1 + ε = ω (1 + ε)
1
2

or

ω′ = ω

{
1 +

ε

2
− ε2

8
+ · · ·

}
(7)

⇒ En =

(
n+

1

2

)
~ω′ (8)

En = E(0)
n

{
1 +

ε

2
− ε2

8
+ · · ·

}
(9)

where E
(0)
n =

(
n+ 1

2

)
~ω

We perform the wave function calculation only for n = 0.

ψ0(x) =

(
mω′

~π

) 1
4

e−
mω′
2~ x2 (10)
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Now (ω′)1/4 = ω1/4 (1 + ε)1/8

So, to �rst order in ε

ω′1/4 = ω1/4
(

1 +
ε

8
+ · · ·

)
ω′ = ω

(
1 +

ε

2
+ · · ·

) (11)

Using Eqn.(11) in Eqn.(10)

ψ0(x) ≈
(mω
~π

)1/4 {
1 +

ε

8

}
e−

mω
2~ {1+ ε

2}x2

≈
(mω
~π

)1/4 {
1 +

ε

8

}
e−

mω
2~ x

2

e−
mωε
4~ x2

Expanding the last term in powers of ε and retaining only the last term.

ψ0(x) ≈
(mω
~π

)1/4 {
1 +

ε

8

}(
1− mωε

4~
x2
)
e−

mω
2~ x

2

≈
(mω
~π

)1/4 {
1 +

ε

8
− mωε

4~
x2
}
e−

mω
2~ x

2

≈
(mω
~π

)1/4
e−

mω
2~ x

2 − ε

4

(mω
~π

)1/4{mω
~
x2 − 1

2

}
e−

mω
2~ x

2

≈ ψ
(0)
0 (x)− ε

16

(mω
~π

)1/4{4mω

~
x2 − 2

}
e−

mω
2~ x

2

but 4mω
~ x2 − 2 = H2

(√
mω
~ x
)

and using the fact that

ψ0(x) ≈ ψ
(0)
0 (x)− ε

4
√

2
ψ

(0)
2 (x) (12)

Let us now perform perturbation theoretic calculation, using V as perturbation
(a). Energy Eigenvalues:

En =E(0)
n + 〈ψ(0)

n |V |ψ(0)
n 〉

+
∑
k

|〈ψ(0)
k |V |ψ

(0)
n 〉|2

E
(0)
n − Ek(0)

E(1)
n = 〈ψ(0)

n |V |ψ(0)
n 〉 =

ε

2
mω2〈n

∣∣x2∣∣n〉
=
ε

2
mω2

∑
k

〈n|x|k〉〈k|x|n〉

but

〈k|x|n〉 = 〈n|x|k〉 =

√
~
mω

[√
n

2
δk,n−1 +

√
n+ 1

2
δk,n+1

]
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∑
k

xknxnk =
~
mω

{
n

2

∑
k

δn−1,kδk,n−1 +
n+ 1

2

∑
k

δn+1,kδk,n+1

}

∑
k

xknxnk =
~
mω

{
n

2

∑
k

δn−1,kδk,n−1 +
n+ 1

2

∑
k

δn+1,kδk,n+1

+ 2

√
n(n+ 1)

4

∑
k

δn−1,kδk,n+1

}
but ∑

k

δn±1,kδk,n±1 = δn±1δn±1 = 1∑
k

δn±1,kδk,n∓1 = δn±1δn∓1 = 0

⇒ E(1)
n =

ε

2

(
n+

1

2

)
~ω =

ε

2
E(0)
n

E(2)
n =

∑
k 6=n

|Vkn|2

E
(0)
n − E(0)

k

=
ε2

4
m2ω4

∑
k 6=n

|〈k |x2|n〉|2(
n+ 1

2

)
~ω −

(
k + 1

2

)
~ω

=
~
mω

√
n

2
δk,n−1 +

√
n+ 1

2
δk,n+1

Now

〈k
∣∣x2∣∣n〉 =

∑
l

〈k|x|l〉〈l|x|n〉

=
~
mω

∑
l

(√
k

2
δl,k−1 +

√
k + 1

2
δl,k+1

)
×

(√
n

2
δl,n−1 +

√
n+ 1

2
δl,n+1

)

=
~
mω

{√
kn

4
δk−1,n−1 +

√
(k + 1) (n+ 1)

4
δk+1,n+1√

(k + 1) (n)

4
δk+1,n−1 +

√
k (n+ 1)

4
δk−1,n+1

}

x2kn =
~
mω

{(
n+

1

2

)
δk,n +

√
n(n− 1)

2
δk,n−2

+

√
(n+ 1)(n+ 2)

2
δk,n+2

} (13)
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⇒ E(2)
n =

ε2

4
m2ω4 〈n− 2 |x2|n〉2

2~ω
+
ε2

4
m2ω4 |〈n+ 2|x|n〉|2

(−2~ω)

=
ε2

4

m2ω4

2~ω
~2

m2ω2

n(n− 1)

4
− ε2

4

m2ω4

2~ω
~2

m2ω2

(n+ 1)(n+ 2)

4

= −ε
2

8

(4n+ 2)

4
~ω = −ε

2

8

(
n+

1

2

)
~ω

= −ε
2

8
E(0)
n

Collecting the results to second order

En =

(
1 +

ε

2
− ε2

8

)
E(0)
n (14)

which is identical to Eq. (9).
(b). Wave Function: First order correction∣∣ψ(1)

n

〉
=
∑
k 6=n

∣∣∣ψ(0)
k

〉 Vkn

E
(0)
n − E(0)

k

=
∑
k 6=n

∣∣∣ψ(0)
k

〉 1
2
mω2ε 〈k |x2|n〉

(n− k)~ω

Using Eq.( )

∣∣ψ(1)
n

〉
=

∣∣∣ψ(0)
n−2

〉 √
n(n−1)
2

mω2ε
2

~
mω

2~ω
−

∣∣∣ψ(0)
n+2

〉 √
(n+1)(n+2)

2
mω2ε ~

mω

2~ω∣∣ψ(1)
n

〉
=
ε

8

√
n(n− 1)

∣∣∣ψ(0)
n−2

〉
− ε

8

√
(n+ 1)(n+ 2)

∣∣∣ψ(0)
n+2

〉
for n = 0, we have ∣∣∣ψ(1)

0

〉
=
−ε

4
√

2

∣∣∣ψ(0)
2

〉
which is identical to the O(ε) term in Eq.(12 ).

4. Consider a 1D SHO with particle mass m, and frequency ω. Assume that the Hamil-
tonian is perturbed by a term V = λx3, where λ is a small number. Calculate the
perturbation corrections to energy up to second order, and to the wave functions, up
to the �rst order.
Soln: Easy to do

5. Consider a hydrogen atom in its �rst excited state with principal quantum number
n = 2. If we apply an electric �eld E = E0k̂ (E0 is a constant) on the atom, using the
degenerate perturbation theory, calculate the �rst order corrections to the energy, and
the modi�ed zeroth order wave functions. What happens to the four-fold degeneracy
of this level?
Soln: Done in the lectures
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6. Consider a particle in a two-dimensional box with the potential

V0 =

{
0 for 0 ≤ x ≤ a, 0 ≤ y ≤ a
∞ otherwise.

What are the energy eigenvalues and eigenfunctions for this system? If we add a
perturbation term V to this Hamiltonian, de�ned by

V =

{
λxy for 0 ≤ x ≤ a, 0 ≤ y ≤ a
0 otherwise.

Obtain the zeroth order energy eigenfunctions, and the �rst-order energy shifts to the
ground and the �rst excited states.
Soln: For a two-dimensional square box, the eigenvalues and eigenfunctions are given
by

En,m =
~2π2

2ma2
(
n2 +m2

)
ψn,m(x, y) =

2

a
sin

nπx

a
sin

mπy

a

and here perturbation term is

V = λxy for 0 6 x 6 a, 0 ≤ y ≤ a

Next we consider corrections to the ground state and the �rst excited state.
(I). Ground state corrections: Ground state unperturbed wave function corre-
sponds to n = m = 1

ψ
(0)
11 (x, y) =

2

a
sin

πx

a
sin

πy

a

and energy

E
(0)
11 =

~2π2

ma2
(15)

(i) Energy Corrections:

E
(1)
11 =

〈
ψ

(0)
11 |V |ψ

(0)
11

〉
For computing various terms, it is important to calculate following useful integral

In,m =

∫ a

0

x sin
nπx

a

mπx

a
dx for (n 6= m)

=
1

2

∫ a

0

[
x cos(n−m)

πx

a
− x cos(n+m)

πx

a

]
dx

Now ∫
x cosαxdx =

1

α
x sinαx− 1

α

∫
sinαxdx

=
x sinαx

α
+

cosαx

α2
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With this ∫ a

0

x cos
nπx

a
dx =

a

nπ
x sin

nπx

a
dx+

a2

n2π2
cos

nπx

a

∣∣∣∣∣
a

0

=
a2

n2π2
(cosnπ − 1)

⇒
∫ a

0

x cos
nπx

a
dx =

a2

n2π2
((−1)n − 1) (16)

Using this, we have

In,m =
a2

2(n−m)2π2

{
(−1)n−m − 1

}
− a2

2 (n2 +m)2 π2

{
(−1)n+m − 1

}
for n 6= m

(17)
But

In,n =
1

2

∫ a

0

{
x− x cos

2nπx

a

}
dx

=
x2

4

∣∣∣∣∣
a

0

− 1

2

∫ a

0

x cos
2nπx

a
dx

using Eq.(16) , the second term becomes zero, so that

In,n =
a2

4
(18)

Now

E
(1)
11 =

(
2

a

)2

λ

∫ a

0

x sin2 πx

a
dx

∫ a

0

y sin2 πy

a
dy

= λ
4

a2
I11 × I11 = λ

4

a2
× a2

4
× a2

4

⇒ E
(1)
11 =

λa2

4
(19)

(II). First excited state: First excited state of this is two-fold degenerate with
energy

E
(0)
1 = E2,1 = E1,2 =

5~2π2

2ma2
(20)

with two eigenfunctions

φ1 =ψ2,1(x, y) =
2

a
sin

2πx

a
sin

πy

a

φ2 =ψ1,2(x, y) =
2

a
sin

πx

a
sin

2πy

a

(21)
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We have to use degenerate perturbation theory at the �rst order for which we have
calculate and diagonalize the V Matrix in {φ1, φ2} basis, with

Vij = 〈φi|V |φj〉

It is obvious that

V11 =
4λ

a2

∫ a

0

x sin2 2πx

a
dx

∫ a

0

y sin2 πy

a
dy

=
4λ

a2
I22I11 =

4λ

a2
×
(a

2

)2
×
(a

2

)2
=
λa2

4

similarly

V22 =
4λ

a2
I11I22 =

λa2

4

and

V12 = V21 =
4λ

a2
I21I12

From Eq.(17)

I12 = I21 = −a
2

π2
+

a2

9π2

or

I12 = I21 = −8a2

9π2

⇒ V12 = V21 =
256λa2

81π4

so that

Ṽ =

(
λa2

4
256
81

λa2

π4

256λa2

81π4
λa2

4

)
Its characteristic polynomial is

k
(
λa2

4
− E

)2
−
(

256a2λ
81π4

)2
= 0

⇒ E − λa2

4
= ±256a2λ

81π4

E
(0)
1,2 =

λa2

4
± 256λa2

81π4

Thus the �rst order correction in energies are

⇒ E
(1)
1 = λa2

(
1

4
+

256

81π4

)
and

⇒ E
(1)
2 = λa2

(
1

4
− 256

81π4

)
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and easy to verify that the corresponding zeroth order wave functions, which are
nothing but eigenfunctions of Ṽ are∣∣∣ψ(0)

1

〉
=

1√
2

(|φ1〉+ |φ2〉)∣∣∣ψ(0)
2

〉
=

1√
2

(|φ1〉 − |φ2〉)

7. A p-orbital electron characterized by |n, l = 1,m = ±1, 0〉 (ignore spin) is subjected
to a potential

V = λ(x2 − y2), (λ = constant).

Obtain the correct zeroth-order energy eigenstates that diagonalize the perturbation.
You need not evaluate the energy shifts in detail, but show that the original threefold
degeneracy is now completely removed.
Soln: Here we have a three-fold degeneracy of the p level, with the unperturbed
eigenfunctions being, in the |lm〉 notation

|φ1〉 = |11〉
|φ2〉 = |10〉
|φ3〉 = |1− 1〉

We have to construct and diagonalize V matrix in this basis, with matrix elements
de�ned as

Vij = 〈φi|V |φj〉

We will calculate these using the Wigner-Eckart theorem. We had showed earlier

x2 − y2 =
1

2

(
T 2
2 + T−22

)
with this

Vij =

〈
αi1mi

∣∣∣∣λ2 (T 2
2 + T−22

)∣∣∣∣αj1mj

〉
=
λ

2

〈
1mi

∣∣T 2
2

∣∣ 1mj

〉
+
λ

2

〈
1mi

∣∣T−22

∣∣ 1mj

〉
using the Wigner-Eckart theorem we have〈

1mi

∣∣T 2
2

∣∣ 1mj

〉
= 〈12mj2|121mi〉 〈1||T2||1〉

clearly this matrix element is non-zero only if

mj + 2 = mi

which is possible if mj = −1 and mi = 1
Similarly 〈

1m
∣∣T−22

∣∣ 1mj

〉
= 〈12mj − 2|121mi〉 〈1||T2||1〉
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this is non-zero only if mj − 2 = mi , which is possible only for mj = 1,mi = −1
Rest of the matrix elements of V are zero. If we de�ne the reduced matrix element as
a = 〈1||T2||1〉.
The non-zero matrix elements of V are

V13 = 〈φ1|V |φ3〉 =
λ

2
〈12− 12|1211〉 a

=

(√
3

5

)
λ

2
a =

√
3

5

λa

2

Similarly

V31 = 〈φ3|V |φ1〉 =
λa

2
〈121− 2|121− 1〉

=

√
3

5

λa

2

⇒ V =
λa

2

√
3

5

 0 0 1
0 0 0
1 0 0


Let's compute the characteristic polynomial∣∣∣∣∣∣

−ε 0 1
0 −ε 0
1 0 −ε

∣∣∣∣∣∣ = 0

−ε
(
ε2 − 0

)
+ (0 + ε) = 0

+ε− ε3 = 0

⇒ ε
(
ε2 − 1

)
= 0

so three eigenvalues will be
ε = 0, ε = ±1

which means the �rst order energy corrections are

4E = 0,∆E = ±
√

3

5

λa

2

If the the initial energy eigenvalue of p orbitals was E0, the corrected eigenvalues will
be

E1 = E0, E2 = E0 −
λa

2

√
3

5

E3 = E0 +
λa

2

√
3

5

Eigenvectors for ε = 0  0 0 1
0 0 0
1 0 0

 c1
c2
c3

 = 0
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⇒ c1 = c3 = 0

⇒ |ψ1〉 =

 0
1
0

 = |φ2〉

For ε2 = −1, E2 = E0 − λa
2

√
3
5 1 0 1

0 1 0
1 0 1

 c1
c2
c3

 = 0

⇒ c2 = 0, c1 = −c3

⇒ |ψ2〉 =
1√
2

 1
0
−1

 =
1√
2

(|φ1〉 − |φ3〉)

easy to show that for ε3 = +1

E3 = E0 +
λa

2

√
3

5

|ψ3〉 =
1√
2

 1
0
1

 =
1√
2

(|φ1〉+ |φ3〉)

8. A Hamiltonian matrix for a two-level system is given by

H =

(
E0

1 λ∆
λ∆ E0

2

)
.

Clearly, the energy eigenfunctions for the unperturbed problem (λ = 0) are given by

φ
(0)
1 =

(
1
0

)
, φ

(0)
2 =

(
0
1

)
.

(a) Solve this problem exactly to �nd the energy eigenfunctions ψ1 and ψ2, and the
energy eigenvalues E1 and E2.

(b) Assuming that λ|∆| � |E0
1 − E0

2 |, solve the same problem using perturbation
theory up to �rst order in the energy eigenfunctions and up to second order in
energy eigenvalues. Compare with the exact results obtained in part (a).

(c) Suppose that the two unperturbed energies are �almost degenerate,� that is

|E0
1 − E0

2 | � λ|∆|.

Show that the exact results of part (a) closely resemble what you would expect
by applying degenerate perturbation theory to this problem with E0

1 = E0
2 .

Soln: Attempt on your own
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9. When a magnetic �eld B = Bk̂, is applied to a hydrogen atom, it leads to the addition
of the following perturbation term to its Hamiltonian

V = − eB

2mc
(Lz + 2Sz),

where c is the speed of light, e is the charge of the electron, m its mass, while Lz and
Sz, respectively, are the components of the z component of its orbital and spin angular
momenta. Using the �rst-order perturbation theory, calculate the energy shifts due
to this term when the hydrogen atom is in: (a) an s state, and (b) in a p state. This
shift in energy levels due to an external magnetic �eld is called the Zeeman e�ect.
Soln: We will consider two cases of Zeeman shift, with and without considering spin.
(I). Without spin:
In this case

V =
−eBLz

2mc

(i) s level
In |lm〉 form at an s level is donated as |00〉

⇒ ∆E
(1)
S = − eB

2mC
〈00 |Lz| 00〉

but Lz|00〉 = 0
⇒ ∆E(1)

s = 0

⇒no Zeeman shift for s level without taking spin into account.
(ii). p level: Here we have three degenerate states |11〉, |10〉, |1− 1〉
Using the fact that

Lz|lm〉 = m~|lm〉
and de�ning Bohr magneton

µB =
−e~
2mc

we have the energy corrections to the three states

∆E
(1)
lm = 〈lm|V |lm〉

∆E
(1)
lm = µBBm

Therefore, the splitting of the p level will be shown, with total energy being Elm =
Ep + ∆E

(1)
lm
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(II). With spin
Here

V =
−eB
2mc

(Lz + 2Sz)

(i) s level:
Now we have two eigenfunctions with uncoupled states |l 1

2
mSz〉 as the basis

|φ1〉 =
∣∣ 0 1

2
0 1

2

〉
|φ2〉 =

∣∣ 0 1
2

0 −1
2

〉
so �rst order energy corrections will be

E
(1)
S1/2

= 〈φ1|V |φ1〉 = − eB

2mc

(
2
~
2

)
= µBB

and
E

(1)
S−1/2

= 〈φ2|V |φ2〉 = −µBB

(ii). p level: Including spin, now we have six basic steps of the form |lsmSz〉 ≡
|11

2
mSz〉

|φ1〉 =
∣∣ 1 1

2
1 1

2

〉
|φ2〉 =

∣∣ 1 1
2

1 −1
2

〉
|φ3〉 =

∣∣ 1 1
2

0 1
2

〉
|φ4〉 =

∣∣ 1 1
2

0 −1
2

〉
|φ5〉 =

∣∣ 1 1
2
−1 1

2

〉
|φ6〉 =

∣∣ 1 1
2
−1 −1

2

〉
and perturbation correction is

∆E
(1)
(i) = 〈φi|V |φi〉

⇒∆E
(1)
(i) = µBB (mi +msi)

where mi = 0,±1, msi = ±1 for sz = ±~
2
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This splitting can be shown as
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