PH 422: Quantum Mechanics II
Tutorial Sheet 4

This tutorial sheet contains problems related to the perturbation theory for time-independent
Schrédinger equation.

1. Assume that a particle of mass m, is carrying out simple harmonic motion in the x
direction.

(a) If the particle carries a charge ¢, and it is exposed to an electric field Ey in the z
direction, obtain its exact eigenvalues and eigenvectors. In particular, show that
the exact eigenket for the n-th level |¢,,) is related to that of the unperturbed

state Wflo)% by |¢n) = e_in()p/mw2h|¢,(LO)>7 where p is the momentum operator.

(b) Assuming that the electric field is small, treat the extra term in the Hamiltonian
V = —qFEyx as a small perturbation, to calculate:

i. corrections to the energy eigenvalues up to second order in perturbation the-
ory
ii. corrections to the wave functions up to first order in perturbation theory.

(c) Expand your exact results in leading orders in &, and compare them with the
results obtained in part (b).
Soln: Done in the lectures

2. Consider a hydrogen atom in its 1s ground state. If we apply an electric field of
strength Fj in the z direction on the hydrogen atom, make an estimate of the first
non-vanishing order of correction in the energy of the 1s state, due to the presence of
the electric field. Using this, estimate the static polarizability « of the atom, employing

the formula
<82AE )
oa=—|—— ,
OE] Eo=0

where AFE is the shift in the energy of the atom, due to the presence of the external
electric field. This effect is called quadratic stark effect.
Soln: Done in the lectures

3. ConsideQr a 1D SHO with particle mass m, and frequency w, with the Hamiltonian
Hy = £ + tmw?2?. To this Hamiltonian we add a perturbing term V = femw?a?,
where € < 1.

(a) Solve this problem exactly, and expand the energies to the second order in €, and
wave functions to the first order in e.

(b) Calculate, using the perturbation theory, the energy corrections to the second
order in €, and wave functions to first order in €, treating V' as a perturbation. For
the wave function, perform the calculations only for the ground state. Compare
your results to those obtained in part (b).



Soln: Here

2
D 1
HO = % + émw2x2 (1)
and the perturbation term
1
V= EemwaQ (2)
Pl
= H=Hy+V =—+-mw?(1+ e’
2m 2
P2
= H = % + §mw’2$2 (3)

where

W =wvl+te (4)

Obviously the exact eigenvalues and eigenfuntions of H

are
E, = <n + %) ho'
and
Un(2) = ) (2,0 = W) (6)

Let us expand E, and ¢, (z) in power of € to compare it with the perturbation
treatment. Clearly

wlzwvl—i-e:w(l—l—e)%

or )
w':w{1+§—€§+ } (7)
1 /
e &2
En_Eg0>{1+———+ } (9)

where EY) = (n + %) hew
We perform the wave function calculation only for n = 0.

1

bola) = (TZ: ) P (10)




Now (/)4 = wl/4 (1 + ¢)'/®
So, to first order in €

w/1/4:w1/4 <1+§+.>

€
I — 14+ = )
w w<+2+

(11)

Using Eqn.(11) in Eqn.(10)

o(@) ~ <@>1/4 {1 + g} e~ {15}’

hm
<mw>1/4{1+ E} 7;1;:1 z2 7724;;5302
~ —_— — [ 1 [ 0
hm 8

Expanding the last term in powers of € and retaining only the last term.

o= () (%)
W
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but 4"“" x? 2—H2( a:)
and usmg the fact that

o) ~ i) = Tsui @) (12

Let us now perform perturbation theoretic calculation, using V' as perturbation
(a). Energy Eigenvalues:

E, =B + (V]

[ V)|

_l’_
k Er(zo) — B,

€
B = OIVIS®) = Smet(n]a?|n)

= S 3 (el ) kel )

(leln) = (ol = |/ - [\f Sencs + \/m5]

but
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but
Z5ni1,k5k,ni1 = Opt10p41 = 1
%
Z Ont1k0kng1 = Opt10pz1 = 0
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Collecting the results to second order

Bo=(1+5-S) po (14)
" 2 8) ™

which is identical to Eq. (9).
(b). Wave Function: First order correction

o) = EZW@>E@ £O

k#n
Z‘¢(O)> Tmw?e (k|22 n)
- = — k)hw
Using Eq.( )
(0) n(n=1) mw2e & (0) (n+1)(n+2) h
D) = o) VEE e [ Y e

ey

i) = SV/n(n = 1)

for n = 0, we have

U) — eV D +2)

(1) :'*)(m
’¢O > 4\/5 ¢2 >
which is identical to the O(e) term in Eq.(12 ).

4. Consider a 1D SHO with particle mass m, and frequency w. Assume that the Hamil-
tonian is perturbed by a term V = Ax®, where ) is a small number. Calculate the
perturbation corrections to energy up to second order, and to the wave functions, up
to the first order.

Soln: Easy to do

5. Consider a hydrogen atom in its first excited state with principal quantum number
n = 2. If we apply an electric field E = Eok (Ep is a constant) on the atom, using the
degenerate perturbation theory, calculate the first order corrections to the energy, and
the modified zeroth order wave functions. What happens to the four-fold degeneracy
of this level?

Soln: Done in the lectures



6. Consider a particle in a two-dimensional box with the potential

0 for0<z<a,0<y<a
Vo = :
00 otherwise.

What are the energy eigenvalues and eigenfunctions for this system? If we add a
perturbation term V' to this Hamiltonian, defined by

Ay for0<z<a,0<y<a
V= .
0 otherwise.

Obtain the zeroth order energy eigenfunctions, and the first-order energy shifts to the
ground and the first excited states.

Soln: For a two-dimensional square box, the eigenvalues and eigenfunctions are given
by

h2m?

_ 2 2
Enm = 2ma? (n tm )
2
Vnm(2,y) = —sin I in Y
a a a

and here perturbation term is
V=MXy for 0<zx<a, 0<y<a

Next we consider corrections to the ground state and the first excited state.
(I). Ground state corrections: Ground state unperturbed wave function corre-
spondston=m =1

ﬁ) (x,y) = 2 sin -~ sin 7Y
a a a
and energy
h2r?
EY = 15
11 ma?2 ( )

(i) Energy Corrections:
1 0 0
Eil) = <¢§1)|V|¢51)>

For computing various terms, it is important to calculate following useful integral

Ian/ wsin = T g for (n #m)
0

a a
1 a
= 5/0 [mcos(n — m)% — xcos(n + m)%] dx
Now
1 1 )
zcosaxdr = —xsinaxr — — | sin axdx
« o

rsinaxr  cosax
= +

o a2



With this

a
=5 (cosnm — 1)
= [Creos e = (1) (16
x cos —dx = —-1)" —
0 a n2m?
Using this, we have
a’ a? +
ILim=———={(-1)"" =1} — )" —1} form#m
= S AU = = S e {1 1) forn
(17)
But | pa 5
Inn:—/ T — T COS nre dx
w2 ) a
27 1 e 2nmx
=7| ~3 z o8 — dx
0 0
using Eq.(16) , the second term becomes zero, so that
2
a
Ly, =— 18
.= (18)
Now
2\ 2 “ T ¢ Y
Eﬁ) = (—) )\/ r sin? —dx/ ysin® ~Zdy
a 0 a 0 a
4 4 a® a®
:)\—111X111—)\—2XZXZ
by 2
= |EY = = (19)

(IT). First excited state: First excited state of this is two-fold degenerate with

energy
5h2m?

Efo) = E2,1 = E1,2 = W

with two eigenfunctions

2, 2mx | my
1 :¢2,1($, y) = —sln —— S8In —

a a a

2 . mx . 27y

o =1 2(x,y) = —sin — sin —=
a a a

(20)



We have to use degenerate perturbation theory at the first order for which we have
calculate and diagonalize the V' Matrix in {¢1, ¢2} basis, with

Vii = (¢:lV ;)

It is obvious that

4N [ 2 @
Vii=—  sin? LﬂEd:v/ y sin? 7T—ydy
0 a

a? Jo a
4\ 4\ a\ 2 a\ 2
= alal= 3% (3) % (3)
_Aad®
4
similarly
4\ \a?
Voo = 5111122 = e
and

4\
Vig = Va1 = 3 Inlhz

From Eq.(17)

2 2
a a
[12:[21=—F+W
or )
8a
lo=15 = —
12 21 972
256 \a?
= Vo=Vy = ——
12 21 3171
so that
- Aa? 256 Aa?
V(e 2 )
81wt 4

Its characteristic polynomial is

e (,\_a2 _ )2 _ <256a2)\>2 -0

4 8174
2

_Aa? __ | 256a%)
= L 4 + 81md

E(o) . )\CL2 256)\@2
b2y 814
Thus the first order correction in energies are

1 421 256
= El = \a (Z—f‘ 17l

and

G (1 256
= Bl =Aa (4_1_817r4
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and easy to verify that the corresponding zeroth order wave functions, which are
nothing but eigenfunctions of ' are
1

[917) = 75 160+ I62))

w7 = 2= o)~ 1)

. A p-orbital electron characterized by |n,l = 1,m = £1,0) (ignore spin) is subjected
to a potential

V= Aa? — ), (A = constant).

Obtain the correct zeroth-order energy eigenstates that diagonalize the perturbation.
You need not evaluate the energy shifts in detail, but show that the original threefold
degeneracy is now completely removed.

Soln: Here we have a three-fold degeneracy of the p level, with the unperturbed
eigenfunctions being, in the |lm) notation

|o1) = [11)
|62) = [10)
[62) = [1=1)

We have to construct and diagonalize V' matrix in this basis, with matrix elements
defined as

Vii = (0ilV]9;)
We will calculate these using the Wigner-Eckart theorem. We had showed earlier

)

T2
&jlmj>

Y A
=3 (1m; | T3] 1my) + 5 (Im; | 7372 1my)

with this

V;'j = <allml % (T22 + T2*2)

using the Wigner-Eckart theorem we have
(1m; |T7| 1my;) = (12m;2[121m;) (1||T3|[1)
clearly this matrix element is non-zero only if
m; +2=m;

which is possible if m; = —1 and m; =1
Similarly
(Im |T57| 1my) = (12m; — 2|121m;) (1]|T2||1)
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this is non-zero only if m; — 2 = m; , which is possible only for m; =1,m; = —1
Rest of the matrix elements of V' are zero. If we define the reduced matrix element as
a = (1|T3][1).

The non-zero matrix elements of V' are

Vis = {0n[VI6) = 5 (12— 121211}«

3\ A 3 \a
= —_— —a: —_—
5/ 2 5 2

Vél=:<¢ﬂvw¢1>=:%;<121—-2u21-1>

Similarly

R ERY
V52
0 01
=V = % % 0 00
1 00
Let’s compute the characteristic polynomial
— 0 1
—€ =0
1 0 -«

—(=0)+(0+¢)=0
+e—e*=0
=e(e?-1)=0
so three eigenvalues will be
e=0,e ==1

which means the first order energy corrections are

3A
AE =0,AE = +4/222
52
If the the initial energy eigenvalue of p orbitals was E, the corrected eigenvalues will

be

Aa |3
By = Eo, By = Eo — — =
Aa /3
Eigenvectors for ¢ = 0
001 1
000 ca | =0
1 00 Cs



=c=c3=0

0
=)= 1 ]=I0)
0
For ey = —1, Fy = F —% %
1 01 C1
010 Cy =0
101 c3
:>C2:0,01:—C3
1 [ ! 1
= [o) =—72| 0 | =—72(¢1)—193)

e\ T

easy to show that for e3 = +1

Aa /3
ES:EOJFT 5
1 1 1
[W3)=—=1 0 | = —=(|¢1) +|93))

Vo W RG>

8. A Hamiltonian matrix for a two-level system is given by

C(EY A
i (04w )

Clearly, the energy eigenfunctions for the unperturbed problem (A = 0) are given by

(a)
(b)

(c)

o= ()= (1)

Solve this problem exactly to find the energy eigenfunctions ¢y and 5, and the
energy eigenvalues F; and Fs.

Assuming that A\|A| < |E) — ES|, solve the same problem using perturbation
theory up to first order in the energy eigenfunctions and up to second order in
energy eigenvalues. Compare with the exact results obtained in part (a).

Suppose that the two unperturbed energies are “almost degenerate,” that is
|EY — B9 < AA].

Show that the exact results of part (a) closely resemble what you would expect
by applying degenerate perturbation theory to this problem with E9 = EJ.

Soln: Attempt on your own
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9. When a magnetic field B = B/%, is applied to a hydrogen atom, it leads to the addition
of the following perturbation term to its Hamiltonian

— (42
v 2mc( = +25:),

where c is the speed of light, e is the charge of the electron, m its mass, while L, and
S, respectively, are the components of the z component of its orbital and spin angular
momenta. Using the first-order perturbation theory, calculate the energy shifts due
to this term when the hydrogen atom is in: (a) an s state, and (b) in a p state. This
shift in energy levels due to an external magnetic field is called the Zeeman effect.
Soln: We will consider two cases of Zeeman shift, with and without considering spin.
(I). Without spin:

In this case

—eBL,
V =
2mce
(i) s level
In |lm) form at an s level is donated as |00)
B
= ABS) = =22 (00|L.] 00
but L.|00) = 0
= AEWM =0

=no Zeeman shift for s level without taking spin into account.
(ii). p level: Here we have three degenerate states |11),]10),|1 — 1)
Using the fact that
L.|lm) = mh|lm)
and defining Bohr magneton
—eh

Hp = 2me

we have the energy corrections to the three states
AEY = (Im|V|im)
AEI%) = ugBm

Therefore, the splitting of the p level will be shown, with total energy being Ej,, =
E, + AEY
p im

m=1
E11
& m=0 Eio
m=-1
Erg

12



(IT). With spin

Here
—eB

2mec

V:

(L, +2S,)

(i) s level:
Now we have two eigenfunctions with uncoupled states [[2mS.) as the basis

1) 0 3)
|62) 0 —3

so first order energy corrections will be

eB h
51/2 = (01|V]¢p1) = 5 <2§>

0
0

N[00 [

and

= (¢2|V|p2) = —pupB

1/2

S;=+h/2

Es

S;="1/2

(ii). p level: Including spin, now we have six basic steps of the form |lsmS,) =
[13mS.)

oy =|1 41 4)
o =141 2f)
o= |15 0 )
og=|1 10 =f)
o =|1 4 -1 1)
oh=|1 1 -1 20

and perturbation correction is

AE) = (6:]V]o1)
:>AE((¢1)) = upB (m; + my;)
h

where m; =0,£1, my =+1 for s, = j:§

13



This splitting can be shown as
m=1, ms=+1

m=1 / m=0, ms=+1
E - >< m=1, m.=-1
p m=0 m=-1, ns'Ts=+1
m=-1 m=0, ms=-1

\ m=-1, ms=-1

14



