PH 422: Quantum Mechanics II Tutorial Sheet 5

This tutorial sheet contains problems related to the time-dependent perturbation theory.

1. Suppose that the matrix element $\langle i| V|n\rangle$ which occurs in the Fermi's Golden Rule, is zero for a given quantum mechanical system. This means that the transition rate $\Gamma_{n \rightarrow i}=0$, in the first order of perturbation theory. Compute the corresponding transition rate in the second order of time-dependent perturbation theory.
2. Consider a one-dimensional harmonic oscillator of mass m, angular frequency ω_{0}, and charge q. We know that for this system $H_{0}|n\rangle=\left(n+\frac{1}{2}\right) \hbar \omega_{0}|n\rangle$. Assume that it is subject to the following perturbation

$$
V(t)= \begin{cases}-q E x & \text { for } 0 \leq t \leq \tau \\ 0 & \text { for } t<0 \text { and } t>\tau\end{cases}
$$

where \mathcal{E} is the electric field. If $P_{n \rightarrow i}$ is the transition probability from the initial level n to the final level i, then
(a) compute $P_{0 \rightarrow 1}$ as a function of τ
(b) Show that in the first order of perturbation theory $P_{0 \rightarrow 2}=0$
(c) Compute $P_{0 \rightarrow 2}$ in the second order of perturbation theory.
3. Consider two spin $1 / 2$'s, \mathbf{S}_{1} and \mathbf{S}_{2}, interacting with each other through Hamiltonian $H(t)=a(t) \mathbf{S}_{1} \cdot \mathbf{S}_{2}$; where $a(t)$ is a function of time which satisfies $\lim _{|t| \rightarrow \infty} a(t)=$ 0 , and takes on non-negligible values (of the order of a_{0}) only inside an interval τ, symmetrically placed about $t=0$.
(a) At $t=-\infty$, the system is in the state $|+,-\rangle$. Calculate, without approximations, the state of the system at $t=+\infty$. Show that probability $P(+-\rightarrow-+)$ of finding, at $t=+\infty$, the system in the state $|-,+\rangle$, depends only on the integral $\int_{-\infty}^{+\infty} a(t) d t$.
(b) Calculate the same probability using the first-order perturbation theory, and compare your results with those obtained in the preceding part.
4. The unperturbed Hamiltonian of a two-level system is represented by

$$
H_{0}=\left(\begin{array}{cc}
E_{1}^{0} & 0 \\
0 & E_{2}^{0}
\end{array}\right) .
$$

This system is perturbed by a time-dependent term

$$
V(t)=\left(\begin{array}{cc}
0 & \lambda \cos \omega t \\
\lambda \cos \omega t & 0
\end{array}\right)
$$

where λ is real.
(a) At $t=0$, the system is known to be in the first state, represented by

$$
\binom{1}{0}
$$

Using time-dependent perturbation theory, and assuming that $\left|E_{1}^{0}-E_{2}^{0}\right| \gg \hbar \omega$, derive an expression for the probability that the system be found in the second state represented by

$$
\binom{0}{1}
$$

as a function of $t(t>0)$.
(b) Why is this procedure not valid when $\left|E_{1}^{0}-E_{2}^{0}\right| \approx \hbar \omega$?
5. Consider a three-level system where the unperturbed states are of the form $|j, m\rangle$, with $j=1$, and $m=0, \pm 1$. We define the ordered orthonormal basis as $\left|\psi_{1}\right\rangle=|1,-1\rangle$, $\left|\psi_{2}\right\rangle=|1,0\rangle$, and $\left|\psi_{3}\right\rangle=|1,1\rangle$, with $\left\langle\psi_{i} \mid \psi_{j}\right\rangle=\delta_{i j}$, where $\left|\psi_{i}\right\rangle$ are eigenfunctions of the time-independent Hamiltonian H_{0}

$$
\begin{aligned}
H_{0}\left|\psi_{1}\right\rangle & =\left(E_{0}-\hbar \omega_{0}^{\prime}\right)\left|\psi_{1}\right\rangle \\
H_{0}\left|\psi_{2}\right\rangle & =E_{0}\left|\psi_{2}\right\rangle \\
H_{0}\left|\psi_{3}\right\rangle & =\left(E_{0}+\hbar \omega_{0}\right)\left|\psi_{1}\right\rangle .
\end{aligned}
$$

The degeneracy of the $j=1$ states has been broken by applying external magnetic and electric fields. Next, a radiofrequency field rotating at the angular velocity ω in the $x O y$ plane is applied, leading to the time-dependent perturbation

$$
V(t)=\frac{\omega_{1}}{2}\left(J_{+} e^{-i \omega t}+J_{-} e^{i \omega t}\right)
$$

where ω_{1} is a constant.
(a) Assuming that

$$
|\psi(t)\rangle=\sum_{i=1}^{3} a_{i}(t) e^{-i E_{i} t / \hbar}\left|\psi_{i}\right\rangle,
$$

write down the differential equations satisfied by $a_{i}(t)$.
(b) Assume that $|\psi(t=0)\rangle=\left|\psi_{1}\right\rangle$. Show that if we want to calculate $a_{3}(t)$ by time-dependent perturbation theory, the calculation must be pursued to second order.
(c) Compute $a_{3}(t)$ up to second order of perturbation theory. For fixed t, how does the probability $P_{1 \rightarrow 3}(t)=\left|a_{3}(t)\right|^{2}$ vary with respect to ω ? Show that a resonance appears, not only for $\omega=\omega_{0}$ and $\omega=\omega_{0}^{\prime}$, but also for $\omega=\left(\omega_{0}+\omega_{0}^{\prime}\right) / 2$.
6. Photoelectric effect is the ejection of an electron from a system, because of its interaction with an incident radiation field. Calculate the cross-section for photoelectric effect for a hydrogen atom in its ground state, by taking the initial electronic state to be the $1 s$ wave function of the hydrogen atom, and the final state to be a box normalized plane wave $\frac{1}{L^{3 / 2}} e^{i \mathbf{k} \cdot \mathbf{r}}$. The radiation field is represented by a plane wave of frequency ω, wave vector $\frac{\omega}{c} \hat{\mathbf{n}}$, polarized in the direction $\hat{\mathbf{e}}$.
7. A hydrogen atom in its ground state is placed between the plates of a capacitor, which applies the following time-dependent electric field

$$
\mathbf{E}=\left\{\begin{array}{cc}
0 & \text { for } t<0 \\
\mathcal{E}_{0} e^{-t / \tau} \hat{k} & \text { for } t>0
\end{array}\right.
$$

Using first-order time-dependent perturbation theory, calculate the transition probability $P_{1 s \rightarrow 2 p_{0}}(t \gg \tau)$, where $2 p_{0}$ state corresponds to the $2 p$ state with $m=0$.

