Chapter 1: Angular Momentum Algebra II

Prof. Alok Shukla

Department of Physics
IIT Bombay, Powai, Mumbai 400076

Course Name: Quantum Mechanics II (PH 422)

In this chapter, first we will briefly review what you have learnt in angular momentum algebra in the first part of this course. After that, we will discuss rotation operators and their representations. The theory will be developed for rotations about general axes, and will make use of the Euler angles. Next important topic will be the addition of angular momenta using the Clebsch-Gordon methodology. For the purpose, the concept of tensor product spaces will be introduced, and the operations of direct sum and direct products will be defined. Using the theory developed, Wigner-Eckart theorem, and its corollary, projection theorem will be proved. Finally, the applications of these concepts will be discussed in various problems in the tutorial sheets.

Introduction

- You studied the basics of angular momentum algebra in the previous course (Q. Mech. I), last semester
- We will first briefly review that
- This will be followed by a discussion of rotation operators and their representations
- Next, we will introduce the concept of tensor-product spaces
- This will allow us to develop the theory of the addition of angular momenta
- Finally, we will prove the Wigner-Eckart theorem, and discuss its consequences

Review of the basics

- The angular momentum operator J is Hermitian vector operator defined as

$$
\begin{equation*}
\mathrm{J}=J_{x} \hat{i}+J_{y} \hat{j}+J_{z} \hat{k} \tag{1}
\end{equation*}
$$

where J_{x}, J_{y}, and J_{z} are its three Cartesian components.

- The Hermiticity condition

$$
\begin{equation*}
\mathrm{J}=\mathrm{J}^{\dagger}, \tag{2}
\end{equation*}
$$

implies that the individual components are also Hermitian

$$
\begin{equation*}
J_{x}=J_{x}^{\dagger} ; \quad J_{y}=J_{y}^{\dagger} ; \quad J_{z}=J_{z}^{\dagger} \tag{3}
\end{equation*}
$$

Review of basics...

- Additionally, the three components of the angular momentum must satisfy the commutation relations

$$
\begin{align*}
& {\left[J_{x}, J_{y}\right]=i \hbar J_{z}} \\
& {\left[J_{y}, J_{z}\right]=i \hbar J_{x}} \tag{4}\\
& {\left[J_{z}, J_{x}\right]=i \hbar J_{y}}
\end{align*}
$$

- Which can be written in the compact form

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \hbar \varepsilon_{i j k} J_{k} \tag{5}
\end{equation*}
$$

- Using these commutation relations, one can show that the operator $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$, with each individual angular momentum component

$$
\begin{equation*}
\left[J^{2}, J_{i}\right]=0 \tag{6}
\end{equation*}
$$

Angular Momentum Algebra (contd.)

- Eq. 6 implies that J^{2} and J_{i} are simultaneously diagonalizable, i.e., they have common eigenvectors
- But, because different components of J do not commute with each other (see Eq. 5), we cannot find their simultaneous eigenvectors
- Thus, by convention, we work with the simultaneous eigenvectors of J^{2} and J_{z}, labeled $|j m\rangle$, satisfying

$$
\begin{gather*}
J^{2}|j m\rangle=j(j+1) \hbar^{2}|j m\rangle \tag{7}\\
J_{z}|j m\rangle=m \hbar|j m\rangle,
\end{gather*}
$$

where $-j \leq m \leq j$.

- Kets $|j m\rangle$ form an orthonormal set

$$
\begin{equation*}
\left\langle j^{\prime} m^{\prime} \mid j m\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m} \tag{8}
\end{equation*}
$$

Angular Momentum Algebra Revision...

- One can also show that the allowed values of j are

$$
\begin{equation*}
j=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots \tag{9}
\end{equation*}
$$

and that successive m for a given j differ by one, i.e., $m^{\prime}=m \pm 1$

- Combining this with that fact that $-j \leq m \leq j$, we conclude that for a given value of j, there are $2 j+1$ allowed values of m, given by

$$
-j,-j+1,-j+2, \ldots, j-2, j-1, j
$$

- Now, the question arises, what is the action of J_{x} and J_{y} operators on the ket $|j m\rangle$?
- To perform these calculations, it helps to define the ladder operators

$$
\begin{equation*}
J_{ \pm}=J_{x} \pm i J_{y} \tag{10}
\end{equation*}
$$

Angular momentum algebra revision...

- It is easy to verify that the ladder operators are not Hermitian

$$
\begin{equation*}
J_{ \pm}^{\dagger}=J_{\mp} . \tag{11}
\end{equation*}
$$

- One can write J^{2} operator in terms of them

$$
\begin{equation*}
J^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{z}^{2} \tag{12}
\end{equation*}
$$

- Using the commutation relations (Eq. 5) one can show that

$$
\begin{aligned}
& J_{+}|j m\rangle=\sqrt{(j-m)(j+m+1)} \hbar|j m+1\rangle \\
& J_{-}|j m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j m-1\rangle .
\end{aligned}
$$

- Or in short

$$
\begin{equation*}
J_{ \pm}|j m\rangle=\sqrt{(j \mp m)(j \pm m+1)} \hbar|j m \pm 1\rangle \tag{13}
\end{equation*}
$$

Revision of Angular Momentum Algebra

- In other words the action of J_{+} / J_{-}on kets $|j m\rangle$ leaves j unchanged, but increments/decrements the m values by one.
- Using Eqs. 13 and 10, one can easily obtain the action of J_{x} / J_{y} operators on the ket $|j m\rangle$
- It is fruitful to make the following comment at this stage
- J_{i} s refer to the Cartesian components of a general angular momentum operator
- In practice, J_{i} could be the orbital angular momentum operator L_{i}, or the spin angular momentum operator S_{i}, or the sum $L_{i}+S_{i}$ of the two.
- Or it could refer to an entirely different kind of angular momentum
- Any operator which satisfies the commutation relations of Eq. 5 , will have the properties of a quantum angular momentum operator

Generator of Rotation

- Let us consider a general vector V, which could represent any vectorial physical quantity such as position r, momentum p etc.
- We will be interested in studying how a given vector transforms under a rotation
- For rotations, we can adopt a "passive" view or an "active" view.
- Under the "passive" view, the coordinate system (i.e. the coordinate axes) are rotated, keeping the vector fixed, and then we study how the vector transforms as a result
- In the "active" view, on the other hand, we hold the coordinate system fixed, and rotate the vector instead, and study its transformation properties

Generator of Rotation...

- Let us consider a system with Hamiltonian H
- We rotate the position vector r by an angle ϕ about an axis oriented along the direction \hat{n}.
- That is, we are adopting an active view of rotations.
- Let R denote the operator representing this rotation, under which $r \rightarrow r^{\prime}$

$$
r^{\prime}=R r
$$

- As a result, in the r-representation, the Hamiltonian operator $H(r)$, as well as a general wave function $\alpha(r)$ also transform

$$
\begin{align*}
H(r) & \rightarrow H^{\prime}\left(r^{\prime}\right) \\
\alpha(r) & \rightarrow \alpha^{\prime}\left(r^{\prime}\right) \tag{14}
\end{align*}
$$

- One can define these transformations using a unitary operator corresponding to the rotation R

Generator of Rotation...

- In the state space (Dirac representation), the corresponding unitary operator is denoted as U_{R}
- Its action on the Hamiltonian H and a general ket $|\alpha\rangle$ is given by

$$
\begin{align*}
H_{R} & =U_{R} H U_{R}^{\dagger} \\
|\alpha\rangle_{R} & =U_{R}|\alpha\rangle . \tag{15}
\end{align*}
$$

- Note that H_{R} and $|\alpha\rangle_{R}$ are the corresponding transformed quantities after the rotation R has been performed.
- Eqs. 15 are the state space counterparts of Eqs. 14.
- One can show that the unitary operator U_{R} is given by

$$
\begin{equation*}
U_{R}=e^{-\frac{i}{\hbar} J \cdot \hat{n} \phi} \tag{16}
\end{equation*}
$$

where J is the vector angular momentum operator defined earlier.

Representation of the Rotation Operator

- Because J appears in the formula of the rotation operator, it is called the generator of rotations
- This is similar to the unitary operator $U(r)$ which defines a translation by a vector r

$$
U(\mathrm{r})=e^{-\frac{i}{\hbar} \mathrm{p} \cdot \mathrm{r}}
$$

where p is the linear momentum operator.

- Thus, p is said to be the generator of translations.
- We know from linear algebra that the matrix corresponding to a linear operator in a vector space, with respect to a chosen basis, is called its representation
- We are interested in obtaining the representation of the U_{R} operator in the state space, with respect to the basis $\{|j m\rangle, m=-j, \ldots j\}$
- The matrices representing U_{R} with respect to the chosen basis are called rotation matrices
- Let us obtain the expressions for the elements of the rotation matrices
- Using the resolution of identity $\left(\sum_{m^{\prime}=-j}^{j}\left|j m^{\prime}\right\rangle\left\langle j m^{\prime}\right|=I\right)$, we obtain

$$
U_{R}|j m\rangle=\sum_{m^{\prime}=-j}^{j}\left|j m^{\prime}\right\rangle\left\langle j m^{\prime}\right| U_{R}|j m\rangle .
$$

- Defining the rotation matrix elements as

$$
\begin{align*}
D_{m^{\prime} m}^{(j)}(R) & =\left\langle j m^{\prime}\right| U_{R}|j m\rangle \\
& =\left\langle j m^{\prime}\right| e^{-\frac{i}{\hbar} J \cdot \hat{\phi} \phi}|j m\rangle \tag{17}
\end{align*}
$$

we obtain

$$
\begin{equation*}
U_{R}|j m\rangle=\sum_{m^{\prime}=-j}^{j} D_{m^{\prime} m}^{(j)}(R)\left|j m^{\prime}\right\rangle \tag{18}
\end{equation*}
$$

- From Eq. 17 it is obvious that the elements $D_{m^{\prime} m}^{(j)}(R)$ define the representation of the rotation operator with respect to the chosen basis, i.e., the rotation matrices.
- It is obvious that computing $D_{m^{\prime} m}^{(j)}(R)$ for the most general rotation will be complicated
- However, for a rotation about the z axis $(\hat{n}=\hat{k})$, the matrix elements have a very simple form, as derived below

$$
\begin{aligned}
D_{m^{\prime} m}^{(j)}(R) & =\left\langle j m^{\prime}\right| e^{-\frac{i}{\hbar} \mathrm{~J} \cdot \hat{n} \phi}|j m\rangle \\
& =\left\langle j m^{\prime}\right| e^{-\frac{i}{\hbar} J_{z} \phi}|j m\rangle \\
& =\left\langle j m^{\prime}\right| e^{-\frac{i}{\hbar} m \hbar \phi}|j m\rangle \\
& =e^{-i m \phi}\left\langle j m^{\prime} \mid j m\right\rangle \\
& =e^{-i m \phi} \delta_{m^{\prime} m}
\end{aligned}
$$

Rotation matrices through Euler Angles

- In the derivation we used the relation

$$
f\left(J_{z}\right)|j m\rangle=f(m \hbar)|j m\rangle,
$$

where $f\left(J_{z}\right)$ is an analytic function of J_{z}.

- The result can be easily proved by making a Taylor expansion of $f\left(J_{z}\right)$, and the fact $J_{z}|j m\rangle=m \hbar|j m\rangle$.
- Rotations about a general axis can be simplified a great deal by borrowing the concept of Euler angles from rigid-body dynamics
- Using the concept of Euler angles or Euler rotations, a general rotation can be expressed in terms of three counter-clockwise rotations by angles α, β, and γ (called Euler angles)
- The first rotation by angle α is about the original z axis
- The second one by angle β is about the new y axis
- The final one by angle γ is about the new z axis.

Rotation matrices using Euler angles...

- Note that here we are rotating the coordinate system, which means these are "passive" rotations
- If the initial axes are defined as (x, y, z), intermediate ones by $\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$, and the final ones by $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, then it is obvious

$$
\begin{equation*}
U_{R}=e^{-\frac{i}{\hbar} \gamma \hat{z}^{\prime} \cdot J} e^{-\frac{i}{\hbar} \beta \hat{y}^{\prime \prime} \cdot J} e^{-\frac{i}{\hbar} \alpha \hat{z} \cdot J} \tag{19}
\end{equation*}
$$

- Using the following mathematical trick, one can transform U_{R} into a form which involves rotations only about the original (unprimed) axes.
- The involves the realization

$$
\begin{equation*}
e^{-\frac{i}{\hbar} \beta \hat{y}^{\prime \prime} \cdot \mathrm{J}}=e^{-\frac{i}{\hbar} \alpha \hat{z} \cdot \mathrm{~J}} e^{-\frac{i}{\hbar} \beta \hat{y} \cdot \mathrm{~J}} e^{\frac{i}{\hbar} \alpha \hat{z} \cdot \mathrm{~J}} \tag{20}
\end{equation*}
$$

Rotation matrixes using Euler angles...

- and

$$
\begin{equation*}
e^{-\frac{i}{\hbar} \gamma \hat{z}^{\prime} \cdot J}=e^{-\frac{i}{\hbar} \beta \hat{y}^{\prime \prime} \cdot J} e^{-\frac{i}{\hbar} \gamma \hat{z} \cdot J} e^{\frac{i}{\hbar} \beta \hat{y}^{\prime \prime} \cdot J} \tag{21}
\end{equation*}
$$

- On substituting Eqs. 20 and 21 in Eq. 19, we obtain the desired expression

$$
\begin{align*}
U_{R} & =e^{-\frac{i}{\hbar} \alpha \hat{z} \cdot J} e^{-\frac{i}{\hbar} \beta \hat{y} \cdot J} e^{-\frac{i}{\hbar} \gamma \hat{z} \cdot J} \\
& =e^{-\frac{i}{\hbar} \alpha J_{z}} e^{-\frac{i}{\hbar} \beta J_{y}} e^{-\frac{i}{\hbar} \gamma J_{z}} \tag{22}
\end{align*}
$$

- This leads to a much simpler expression for a general rotation matrix

$$
\begin{align*}
D_{m^{\prime} m}^{(j)}(R) & =\left\langle j m^{\prime}\right| e^{-\frac{i}{\hbar} \alpha J_{z}} e^{-\frac{i}{h} \beta J_{y}} e^{-\frac{i}{\hbar} \gamma J_{z}}|j m\rangle \\
& =e^{-i m^{\prime} \alpha} e^{-i m \gamma}\left\langle j m^{\prime}\right| e^{-\frac{i}{h} \beta J_{y}}|j m\rangle \\
& =e^{-i m^{\prime} \alpha} e^{-i m \gamma}\left\langle j m^{\prime}\right| e^{-\frac{\beta}{2 h}\left(J_{+}-J_{-}\right)}|j m\rangle \tag{23}
\end{align*}
$$

Rotation matrices

- One can also verify the following symmetry properties of the rotation matrices

$$
\begin{align*}
& D_{m^{\prime} m}^{(j) \star}(\alpha, \beta, \gamma)=D_{m^{\prime} m}^{(j)}(-\gamma,-\beta,-\alpha) \tag{24}\\
& D_{m^{\prime} m}^{(j)^{*}}(\alpha, \beta, \gamma)=(-1)^{m-m^{\prime}} D_{-m^{\prime},-m}^{(j)}(\alpha, \beta, \gamma) .
\end{align*}
$$

Orbital Angular Momentum and Rotation Matrices

- If $j=I$, where I is a non-negative integer, we have

$$
\begin{equation*}
\langle r \mid I m\rangle=Y_{I m}(\theta, \phi) \tag{25}
\end{equation*}
$$

- Above $Y_{l m}(\theta, \phi)$ is a spherical harmonic, an eigenfunction of the L^{2} and L_{z} operators

$$
\begin{align*}
L^{2}|I m\rangle & =I(I+1) \hbar^{2}|I m\rangle \tag{26}\\
L_{z}|I m\rangle & =m \hbar|I m\rangle
\end{align*}
$$

- Let us explore the influence of a rotation R on spherical harmonics.

$$
\begin{align*}
|I m\rangle^{\prime} & =U_{R}|I m\rangle \\
& =\sum_{m^{\prime}=-1}^{l}\left\langle I m^{\prime}\right| U_{R}|I m\rangle\left|/ m^{\prime}\right\rangle \\
& =\sum_{m^{\prime}=-1}^{l} D_{m^{\prime} m}^{(I)}(R)\left|/ m^{\prime}\right\rangle \tag{27}
\end{align*}
$$

Orbital angular momentum...

- On taking the projection of Eq. 27 in r space, we have

$$
\langle\mathrm{r} \mid / m\rangle^{\prime}=\sum_{m^{\prime}=-1}^{l} D_{m^{\prime} m}^{(I)}(R)\left\langle\mathrm{r} \mid / m^{\prime}\right\rangle
$$

leading to

$$
\begin{equation*}
Y_{l m}\left(\theta^{\prime}, \phi^{\prime}\right)=\sum_{m^{\prime}=-l}^{l} D_{m^{\prime} m}^{(I)}(R) Y_{l m^{\prime}}(\theta, \phi) \tag{28}
\end{equation*}
$$

where (θ, ϕ) and $\left(\theta^{\prime}, \phi^{\prime}\right)$ denote the coordinates of the same point in space, but with respect to the initial and the rotated coordinate axes.

Orbital angular momentum.

- Using the unitary property of the rotation matrices, one can easily invert Eq. 28 above to obtain

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=\sum_{m^{\prime}=-l}^{l} D_{m m^{\prime}}^{(I) *}(R) Y_{l m^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{29}
\end{equation*}
$$

- For a point on the z^{\prime} axis, $\theta^{\prime}=0$, while for the same point $\theta=\beta$ and $\phi=\alpha$. Using this, and the fact that

$$
\begin{equation*}
Y_{l m^{\prime}}\left(\theta^{\prime}=0, \phi^{\prime}\right)=\sqrt{\frac{2 l+1}{4 \pi}} \delta_{m^{\prime} 0} \tag{30}
\end{equation*}
$$

we obtain from Eq. 29

$$
Y_{l m}(\beta, \alpha)=\sum_{m^{\prime}=-l}^{l} D_{m m^{\prime}}^{(I) *}(R) \sqrt{\frac{2 l+1}{4 \pi}} \delta_{m^{\prime} 0}
$$

leading to

$$
\begin{equation*}
D_{m 0}^{(I) *}(R)=\sqrt{\frac{4 \pi}{2 l+1}} Y_{l m}(\beta, \alpha) \tag{31}
\end{equation*}
$$

Orbital Angular Momentum...

- Using Eqs. 28 and 31, we can prove another interesting result
- For the purpose, we set $m=0$ in Eq. 28

$$
\begin{aligned}
Y_{l 0}\left(\theta^{\prime}, \phi^{\prime}\right) & =\sum_{m^{\prime}=-I}^{l} D_{m^{\prime} 0}^{(I)}(R) Y_{l m^{\prime}}(\theta, \phi) \\
& =\sqrt{\frac{4 \pi}{2 l+1}} \sum_{m^{\prime}=-I}^{l} Y_{l m^{\prime}}^{*}(\beta, \alpha) Y_{l m^{\prime}}(\theta, \phi)
\end{aligned}
$$

- Using the fact that $Y_{I 0}\left(\theta^{\prime}, \phi^{\prime}\right)=\sqrt{\frac{2 I+1}{4 \pi}} P_{l}\left(\cos \theta^{\prime}\right)$, we obtain from above

$$
\begin{equation*}
P_{l}\left(\cos \theta^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-I}^{l} Y_{l m}^{*}(\beta, \alpha) Y_{l m}(\theta, \phi) \tag{32}
\end{equation*}
$$

which is a very useful mathematical result called "addition theorem of spherical harmonics".

Direct Sum and Direct Product Spaces

- Suppose we have two vector spaces \mathscr{E}_{1} with basis $\left\{\left|a_{i}\right\rangle, i=1, \ldots, n\right\}$ and \mathscr{E}_{2} with basis $\left\{\left|b_{j}\right\rangle, j=1, \ldots, m\right\}$
- Using the operations of direct sum and direct product one can construct larger dimensional spaces, as compared to the original spaces, as explained below.
- Direct Sum: The direct sum space of \mathscr{E} of \mathscr{E}_{1} and \mathscr{E}_{2} is defined as

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{1} \oplus \mathscr{E}_{2} \tag{33}
\end{equation*}
$$

above \oplus sign indicates the operation of direct sum. The vector space \mathscr{E} has dimension $n+m$, with the ordered basis $\left\{\left|a_{1}\right\rangle,\left|a_{2}\right\rangle, \ldots\left|a_{n}\right\rangle,\left|b_{1}\right\rangle,\left|b_{2}\right\rangle, \ldots\left|b_{m}\right\rangle\right\}$

- Next, we demonstrate the operation of direct sum for the case of two vectors
- Let us consider two kets $|v\rangle \in \mathscr{E}_{1}$ and $|u\rangle \in \mathscr{E}_{2}$, so that

$$
\begin{align*}
& |v\rangle=\sum_{i=1}^{n} v_{i}\left|a_{i}\right\rangle \\
& |u\rangle=\sum_{j=1}^{m} u_{j}\left|b_{j}\right\rangle \tag{34}
\end{align*}
$$

- These two kets can be expressed as column vectors

$$
\begin{align*}
& |v\rangle \equiv\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \\
& |u\rangle \equiv\left(\begin{array}{c}
u_{1} \\
\vdots \\
\dot{u}_{m}
\end{array}\right) \tag{35}
\end{align*}
$$

- Then the direct sum of the two vectors $w=v \oplus u$, can be represented as the column vector

$$
w \equiv\left(\begin{array}{c}
v_{1} \tag{36}\\
\vdots \\
v_{n} \\
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)
$$

- For linear operators $A: \mathscr{E}_{1} \rightarrow \mathscr{E}_{1}$ and $B: \mathscr{E}_{2} \rightarrow \mathscr{E}_{2}$, represented as

$$
A \equiv\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \tag{37}\\
a_{21} & \vdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right),
$$

- and

$$
B \equiv\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \tag{38}\\
\vdots & \vdots & \vdots \\
b_{m 1} & \cdots & b_{m m}
\end{array}\right)
$$

- the representation of $C=A \oplus B$, where $C: \mathscr{E} \rightarrow \mathscr{E}$ will be

$$
C \equiv\left(\begin{array}{cccccc}
a_{11} & \cdots & a_{1 n} & 0 & \cdots & 0 \tag{39}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \cdots & a_{n n} & 0 & \cdots & 0 \\
0 & \cdots & 0 & b_{11} & \cdots & b_{1 m} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & b_{m 1} & \cdots & b_{m m}
\end{array}\right)
$$

- In a shorthand notation, one can write Eq. 39 as

$$
C \equiv\left(\begin{array}{cc}
A & O \tag{40}\\
O^{T} & B
\end{array}\right)
$$

where O denotes a $n \times m$ dimensional null matrix.

- The direct (or tensor) product space of \mathscr{E}_{1} and \mathscr{E}_{2} is denoted as

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2} \tag{41}
\end{equation*}
$$

and is an $n m$ dimensional space with the ordered basis $\left\{\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle, i=1, \ldots, n ; j=1, \ldots, m\right\}$.

- Various notations used to depict the direct product basis are

$$
\begin{equation*}
\left|a_{i}\right\rangle \otimes\left|b_{j}\right\rangle=\left|a_{i}\right\rangle\left|b_{j}\right\rangle=\left|a_{i} b_{j}\right\rangle . \tag{42}
\end{equation*}
$$

- Similar to direct sum, one can have the direct product of two vectors, as well as two operators belonging to state spaces \mathscr{E}_{1} and \mathscr{E}_{2}.
- Let us consider two kets $|v\rangle \in \mathscr{E}_{1}$ and $|u\rangle \in \mathscr{E}_{2}$, defined in Eqs. 34 and 35.

Direct product of vectors

- The direct product of these two kets $|w\rangle=|v\rangle \otimes|u\rangle$ is defined as

$$
|w\rangle=|v\rangle \otimes|u\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m} v_{i} u_{j}\left|a_{i} b_{j}\right\rangle
$$

- For the chosen ordered basis, the representation of $|w\rangle$ is

$$
|w\rangle \equiv\left(\begin{array}{c}
v_{1} u_{1} \tag{43}\\
\vdots \\
v_{1} u_{m} \\
v_{2} u_{1} \\
\vdots \\
v_{2} u_{m} \\
\vdots \\
v_{n} u_{1} \\
\vdots \\
v_{n} u_{m}
\end{array}\right)
$$

- Let us again consider linear operators $A: \mathscr{E}_{1} \rightarrow \mathscr{E}_{1}$ and $B: \mathscr{E}_{2} \rightarrow \mathscr{E}_{2}$, whose representations with respect to the given ordered basis are given by Eqs. 37 and 38.
- The matrix elements of A and B are given by $A_{i j}=\left\langle a_{i}\right| A\left|a_{j}\right\rangle$ and $B_{k l}=\left\langle b_{k}\right| B\left|b_{l}\right\rangle$
- Let us compute the matrix elements of the operator $C: \mathscr{E} \rightarrow \mathscr{E}$ which is the direct product of A and B

$$
C=A \otimes B .
$$

- So that

$$
\begin{align*}
C_{i k ; j l} & =\left\langle a_{i} b_{k}\right| A \otimes B\left|a_{j} b_{l}\right\rangle \\
& =\left\langle a_{i}\right| A\left|a_{j}\right\rangle\left\langle b_{k}\right| B\left|b_{l}\right\rangle \\
& =A_{i j} B_{k l} . \tag{44}
\end{align*}
$$

- Assuming the ordered basis to be the same as considered earlier for direct product of kets
$\left\{\left|a_{1} b_{1}\right\rangle, \ldots,\left|a_{1} b_{m}\right\rangle,\left|a_{2} b_{1}\right\rangle, \ldots,\left|a_{2} b_{m}\right\rangle, \ldots,\left|a_{n} b_{1}\right\rangle, \ldots,\left|a_{n} b_{m}\right\rangle\right\}$
- We obtain the following matrix representation of C

$$
C=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \tag{45}\\
\vdots & \vdots & \vdots \\
a_{n 1} B & \cdots & a_{n n} B
\end{array}\right)
$$

where $a_{i j} B$ is the matrix obtained by multiplying each element of the B matrix by $a_{i j}$

$$
a_{i j} B=\left(\begin{array}{ccc}
a_{i j} b_{11} & \cdots & a_{i j} b_{1 m} \tag{46}\\
\vdots & \vdots & \vdots \\
a_{i j} b_{m 1} & \cdots & a_{i j} b_{m m}
\end{array}\right)
$$

An Example of a Direct Product of Matrices

- Let us illustrate the procedure of computing the direct product by considering an example involving 2×2 matrices.
- Let $n=m=2$, so that

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
B & =\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
\end{aligned}
$$

- So that $C=A \otimes B$ is given by

$$
C=\left(\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right) .
$$

Addition of Angular Momenta

- Suppose we have two distinct angular momenta J_{1} and J_{2}, which may belong to two different particles of a given system
- Or may correspond to two different types of angular momenta (say L and S) of the same particle
- Let J_{1} and J_{2} belong to state spaces \mathscr{E}_{1} and \mathscr{E}_{2}
- Then the total angular momentum J obtained by adding J_{1} and J_{2} will be symbolically denoted as $\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2}$
- But, as we know that \mathscr{E}_{1} and \mathscr{E}_{2} are different spaces with different dimensions, in general.
- Therefore, we cannot simply add quantities belonging to different state spaces
- As a matter of fact J belongs to the direct product space $\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$.
- We will show that the mathematically rigorous manner of adding the two angular momenta is

$$
\begin{equation*}
\mathrm{J}=\mathrm{J}_{1} \otimes \mathrm{I}_{2}+\mathrm{I}_{1} \otimes \mathrm{~J}_{2} \tag{47}
\end{equation*}
$$

where $I_{1} \in \mathscr{E}_{1}$ and $I_{2} \in \mathscr{E}_{2}$ are the identity operators.

- Let us consider a rotation by an angle ϕ about an axis oriented along the direction \hat{n}.
- Because J is the angular momentum operator in the direct product space $\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$, therefore it must generate rotations in that space

$$
\begin{equation*}
U_{R}^{(\mathscr{E})}=e^{-\frac{i}{\hbar} J \cdot \hat{n} \phi} \tag{48}
\end{equation*}
$$

Addition of angular momenta...

- Similarly, J_{1} and J_{2} are generators of rotations in spaces \mathscr{E}_{1} and \mathscr{E}_{2}, as a result of which

$$
\begin{align*}
U_{R}^{\left(\mathscr{E}_{1}\right)} & =e^{-\frac{i}{\hbar} J_{1} \cdot \hat{n} \phi} \\
U_{R}^{\left(\mathscr{E}_{2}\right)} & =e^{-\frac{i}{\hbar} J_{2} \cdot \hat{n} \phi} . \tag{49}
\end{align*}
$$

- Because, $\mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$, therefore

$$
\begin{equation*}
U_{R}^{(\mathscr{E})}=U_{R}^{\left(\mathscr{E}_{1}\right)} \otimes U_{R}^{\left(\mathscr{E}_{2}\right)} \tag{50}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
e^{-\frac{i}{\hbar} J \cdot \hat{n} \phi}=e^{-\frac{i}{\hbar} J_{1} \cdot \hat{n} \phi} \otimes e^{-\frac{i}{\hbar} J_{2} \cdot \hat{n} \phi} \tag{51}
\end{equation*}
$$

Addition of angular momenta

- The RHS of the previous equation (Eq. 51) can be rewritten as

$$
\begin{aligned}
e^{-\frac{i}{\hbar} \mathrm{~J}_{1} \cdot \hat{n} \phi} \otimes e^{-\frac{i}{\hbar} \mathrm{~J}_{2} \cdot \hat{n} \phi} & =\left(e^{-\frac{i}{\hbar}\left(\mathrm{~J}_{1} \otimes \boldsymbol{I}_{2}\right) \cdot \hat{n} \phi}\right)\left(e^{-\frac{i}{\hbar}\left(I_{1} \otimes \mathrm{~J}_{2}\right) \cdot \hat{n} \phi}\right) \\
& =e^{-\frac{i}{\hbar}\left(\mathrm{~J}_{1} \otimes \mathbf{1}_{2}+\boldsymbol{I}_{1} \otimes \mathrm{~J}_{2}\right) \cdot \hat{n} \phi}
\end{aligned}
$$

- The last step above was possible because J_{1} and J_{2} commute with each other, as they are in different spaces. This, on substitution in Eq. 51 leads to

$$
\begin{equation*}
e^{-\frac{i}{\hbar} J \cdot \hat{n} \phi}=e^{-\frac{i}{\hbar}\left(\mathrm{~J}_{1} \otimes I_{2}+I_{1} \otimes J_{2}\right) \cdot \hat{n} \phi} \tag{52}
\end{equation*}
$$

- On comparing the two sides, we obtain the desired result of Eq. 47

$$
\mathrm{J}=\mathrm{J}_{1} \otimes \mathrm{I}_{2}+\mathrm{I}_{1} \otimes \mathrm{~J}_{2}
$$

- As mentioned earlier, this result is often written in an informal manner as a simple addition of J_{1} and J_{2} operators

$$
\begin{equation*}
\mathrm{J}=\mathrm{J}_{1}+\mathrm{J}_{2} \tag{53}
\end{equation*}
$$

Addition of angular momenta.

- Because $\left[J_{1}, J_{2}\right]=0$, therefore, it is easy to prove that J^{2} and various components J_{i} satisfy the same commutation relations satisfied by $J_{1}^{2}, J_{1 i}, J_{2}^{2}$, and $J_{2 i}$

$$
\begin{align*}
& {\left[J^{2}, J_{i}\right]=0} \tag{54}\\
& {\left[J_{i}, J_{j}\right]=i \hbar \varepsilon_{i j k} J_{k}}
\end{align*}
$$

- Eq. 54 implies that there exists a basis $|j m\rangle$ which are the common eigenvectors of J^{2} and J_{z}

$$
\begin{align*}
& J^{2}|j m\rangle=\hbar^{2} j(j+1)|j m\rangle \tag{55}\\
& J_{z}|j m\rangle=m \hbar|j m\rangle
\end{align*}
$$

- But it is easy to see

$$
\begin{equation*}
\left[J_{1}^{2}, J_{z}\right]=\left[J_{2}^{2}, J_{z}\right]=\left[J^{2}, J_{1}^{2}\right]=\left[J^{2}, J_{2}^{2}\right]=0 \tag{56}
\end{equation*}
$$

- This means that $|j m\rangle$ states must also be eigenvectors of J_{1}^{2} and J_{2}^{2} operators, in addition J^{2}, and J_{z}

$$
\begin{align*}
J_{1}^{2}|j m\rangle & =j_{1}\left(j_{1}+1\right) \hbar^{2}|j m\rangle \\
J_{2}^{2}|j m\rangle & =j_{2}\left(j_{2}+1\right) \hbar^{2}|j m\rangle . \tag{57}
\end{align*}
$$

Addition of Angular Momenta...

- Therefore, we adopt the notation

$$
\begin{equation*}
|j m\rangle \rightarrow\left|j_{1} j_{2} j m\right\rangle, \tag{58}
\end{equation*}
$$

which indicates that these states are eigenvectors of operators of $J_{1}^{2}, J_{2}^{2}, J^{2}$, and J_{z}.

- Clearly, states $\left|j_{1} j_{2} j m\right\rangle \in \mathscr{E}$, which is a direct product space
- But, direct product states $\left|j_{1} j_{2} m_{1} m_{2}\right\rangle=\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$ also belong to \mathscr{E}
- Therefore, the two sets of states must be related to each other by a unitary transformation, because both form orthonormal sets, and span the same state space \mathscr{E}

$$
\begin{align*}
\left\langle j_{1}^{\prime} j_{2}^{\prime} j^{\prime} m^{\prime} \mid j_{1} j_{2} j m\right\rangle & =\delta_{j_{1}^{\prime} j_{1}} \delta_{j_{2}^{\prime} j_{2}} \delta_{j^{\prime} j} \delta_{m^{\prime} m} \tag{59}\\
\left\langle j_{1}^{\prime} j_{2}^{\prime} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} m_{1} m_{2}\right\rangle & =\delta_{j_{1}^{\prime} j_{1}} \delta_{j_{2}^{\prime} j_{2}} \delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2}}
\end{align*}
$$

Clebsch-Gordon Coefficients

- To establish the connection between the states $\left|j_{1} j_{2} j m\right\rangle$ and $\left|j_{1} j_{2} m_{1} m_{2}\right\rangle$, we make use of the resolution of identity for fixed values of j_{1} and j_{2}

$$
\begin{equation*}
I=\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2}\right|, \tag{60}
\end{equation*}
$$

and apply it on the state $\left|j_{1} j_{2} j m\right\rangle$

$$
\begin{align*}
\left|j_{1} j_{2} j m\right\rangle & =I\left|j_{1} j_{2} j m\right\rangle \\
& =\sum_{m_{1}, m_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle \tag{61}
\end{align*}
$$

- From Eq. 61, it is obvious that the two sets of states are connected by expansion coefficients $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle$, called Clebsch-Gordon coefficients
- Next, we will study their properties, and develop approaches for computing them.

Clebsch-Gordon Coefficients.

- Let us apply $J_{z}=J_{1 z}+J_{2 z}$ operator on both the sides of Eq. 61

$$
J_{z}\left|j_{1} j_{2} j m\right\rangle=\sum_{m_{1}, m_{2}}\left(J_{1 z}+J_{2 z}\right)\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle
$$

- This leads to

$$
m \hbar\left|j_{1} j_{2} j m\right\rangle=\sum_{m_{1}, m_{2}}\left(m_{1}+m_{2}\right) \hbar\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle
$$

- Taking the inner product of this equation with $\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime}\right\rangle$ on both the sides, and making use of the orthonormality relations (Eq. 59) we obtain

$$
\begin{aligned}
m\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m\right\rangle & =\left(m_{1}^{\prime}+m_{2}^{\prime}\right)\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m\right\rangle \\
\Longrightarrow m\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle & =\left(m_{1}+m_{2}\right)\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle
\end{aligned}
$$

Clebsch-Gordon Coefficients.

- Leading to

$$
\left(m-m_{1}-m_{2}\right)\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle=0 .
$$

- Clearly $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle \neq 0$, only if

$$
\begin{equation*}
m=m_{1}+m_{2} \tag{62}
\end{equation*}
$$

- This formula is called "conservation of m " or " m selection rule"
- This implies that only those Clebsch-Gordon coefficients (CGCs) $\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle$ will be non-vanishing for which $m=m_{1}+m_{2}$

Recursion Relations of Clebsch-Gordon Coefficients

- Next, we apply J_{+}and J_{-}operators on Eq. 61 to derive important recursions relations involving CGCs.
- Note that here

$$
\begin{equation*}
J_{ \pm}=J_{1 \pm}+J_{2 \pm} . \tag{63}
\end{equation*}
$$

- With this

$$
\begin{equation*}
J_{ \pm}\left|j_{1} j_{2} j m\right\rangle=\sum_{m_{1}, m_{2}}\left(J_{1 \pm}+J_{2 \pm}\right)\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle . \tag{64}
\end{equation*}
$$

- But, using Eqs. 13 , we obtain

$$
\begin{align*}
J_{ \pm}\left|j_{1} j_{2} j m\right\rangle & =\sqrt{(j \mp m)(j \pm m+1)} \hbar\left|j_{1} j_{2} j m \pm 1\right\rangle \\
\left(J_{1 \pm}+J_{2 \pm}\right)\left|j_{1} j_{2} m_{1} m_{2}\right\rangle & =\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)} \hbar\left|j_{1} j_{2} m_{1} \pm 1 m_{2}\right\rangle \\
& +\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)} \hbar\left|j_{1} j_{2} m_{1} m_{2} \pm 1\right\rangle \tag{65}
\end{align*}
$$

CGC Recursion Relations

- Substituting Eqs. 65 in Eq. 64, we obtain

$$
\begin{gather*}
\sqrt{(j \mp m)(j \pm m+1)} \hbar\left|j_{1} j_{2} j m \pm 1\right\rangle \\
=\sum_{m_{1}, m_{2}}\left\{\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)} \hbar\left|j_{1} j_{2} m_{1} \pm 1 m_{2}\right\rangle\right. \\
\left.+\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)} \hbar\left|j_{1} j_{2} m_{1} m_{2} \pm 1\right\rangle\right\}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle \tag{66}
\end{gather*}
$$

- We take the inner product of Eq. 66 with $\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime}\right\rangle$, and use the orthonormality relations of Eq. 59 to obtain

$$
\begin{gathered}
\sqrt{(j \mp m)(j \pm m+1)}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m \pm 1\right\rangle \\
=\sum_{m_{1}, m_{2}}\left\{\sqrt{\left(j_{1} \mp m_{1}\right)\left(j_{1} \pm m_{1}+1\right)} \delta_{m_{1}^{\prime} m_{1} \pm 1} \delta_{m_{2}^{\prime} m_{2}}\right. \\
\left.+\sqrt{\left(j_{2} \mp m_{2}\right)\left(j_{2} \pm m_{2}+1\right)} \delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2} \pm 1}\right\}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle,
\end{gathered}
$$

which leads to

$$
\begin{aligned}
& \sqrt{(j \mp m)(j \pm m+1)}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m \pm 1\right\rangle \\
= & \left.\sqrt{\left.\left(j_{1} \mp m_{1}^{\prime}+1\right)\right)\left(j_{1} \pm m_{1}^{\prime}\right.}\right)\left\langle j_{1} j_{2} m_{1}^{\prime} \mp 1 m_{2} \mid j_{1} j_{2} j m\right\rangle \\
+ & \sqrt{\left.\left(j_{2} \mp m_{2}^{\prime}+1\right)\right)\left(j_{2} \pm m_{2}^{\prime}\right)}\left\langle j_{1} j_{2} m_{1} m_{2}^{\prime} \mp 1 \mid j_{1} j_{2} j m\right\rangle
\end{aligned}
$$

- Next, we just replace m_{1}^{\prime} and m_{2}^{\prime} by m_{1} and m_{2}, respectively, to obtain the final expression for the desired recursion relation

$$
\begin{align*}
& \sqrt{(j \mp m)(j \pm m+1)}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m \pm 1\right\rangle \\
&=\sqrt{\left(j_{1} \pm m_{1}\right)\left(j_{1} \mp m_{1}+1\right)}\left\langle j_{1} j_{2} m_{1} \mp 1 m_{2} \mid j_{1} j_{2} j m\right\rangle \tag{67}\\
&+ \sqrt{\left(j_{2} \pm m_{2}\right)\left(j_{2} \mp m_{2}+1\right)}\left\langle j_{1} j_{2} m_{1} m_{2} \mp 1 \mid j_{1} j_{2} j m\right\rangle
\end{align*}
$$

Calculating CGCs using Recursion Relations

- Using recursion relation of Eq. 67, one can compute, for a given set of j_{1}, j_{2}, and j, all non-vanishing CGCs, in terms of just one of them.
- Let us choose maximum allowed values for m_{1} and m :

$$
m_{1}=j_{1}, m=j
$$

- And let $m_{2}=j-j_{1}-1$
- Substituting these in Eq. 67 with the lower sign, we obtain

$$
\begin{gathered}
\sqrt{(j+j)(j-j+1)}\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle \\
=\sqrt{\left(j_{1}-j_{1}\right)\left(j_{1}+j_{1}+1\right)}\left\langle j_{1} j_{2} j_{1}+1 j-j_{1}-1 \mid j_{1} j_{2} j j\right\rangle \\
+\sqrt{\left(j_{2}-\left(j-j_{1}-1\right)\right)\left(j_{2}+j-j_{1}-1+1\right)}\left\langle j_{1} j_{2} j_{1} j-j_{1}-1+1 \mid j_{1} j_{2} j j\right\rangle
\end{gathered}
$$

- We note that the first term on the RHS of the previous equation vanishes, as a result of which we obtain

$$
\begin{align*}
& \left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle \\
& =\sqrt{\frac{\left(j_{1}+j_{2}+1-j\right)\left(j+j_{2}-j_{1}\right)}{2 j}}\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle \tag{68}
\end{align*}
$$

- From Eq. 68 we can compute the CGC $\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle$, provided the value of $\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle$ is known
- Let us again use the recursion relations of Eq. 67, but using the upper sign, and $m_{1}=j_{1}, m=j-1$, and $m_{2}=j-j_{1}$

$$
\begin{gathered}
\sqrt{(j-(j-1))(j+(j-1)+1)}\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j(j-1)+1\right\rangle \\
=\sqrt{\left(j_{1}+j_{1}\right)\left(j_{1}-j_{1}+1\right)}\left\langle j_{1} j_{2} j_{1}-1 j-j_{1} \mid j_{1} j_{2} j j-1\right\rangle \\
+\sqrt{\left(j_{2}+j-j_{1}\right)\left(j_{2}-\left(j-j_{1}\right)+1\right)}\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle
\end{gathered}
$$

Calculations of CGCs...

- This simplifies to

$$
\begin{gathered}
\sqrt{2 j}\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} i j\right\rangle \\
=\sqrt{2 j_{1}}\left\langle j_{1} j_{2} j_{1}-1 j-j_{1} \mid j_{1} j_{2} j j-1\right\rangle \\
+\sqrt{\left(j_{2}+j-j_{1}\right)\left(j_{1}+j_{2}-j+1\right)}\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle,
\end{gathered}
$$

leading to the final form

$$
\begin{gather*}
\left\langle j_{1} j_{2} j_{1}-1 j-j_{1} \mid j_{1} j_{2} j-1\right\rangle \\
=\sqrt{\frac{j}{j_{1}}}\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle \tag{69}\\
-\sqrt{\frac{\left(j_{2}+j-j_{1}\right)\left(j_{1}+j_{2}-j+1\right)}{2 j_{1}}}\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle .
\end{gather*}
$$

- Thus Eq. 69 allows us to compute the CGC $\left\langle j_{1} j_{2} j_{1}-1 j-j_{1} \mid j_{1} j_{2} j-1\right\rangle$ if we know the values of $\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle$ and $\left\langle j_{1} j_{2} j_{1} j-j_{1}-1 \mid j_{1} j_{2} j j-1\right\rangle$.
- Thus, using the recursion relations (Eq. 67) we can compute all the CGCs, provided we know the value of $\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle$.

Triangular Inequality of CGCs

- Let us derive another important selection rule for CGCs, which allows us to compute all allowed values of j, for the given values of j_{1} and j_{2}.
- Let us consider the CGC $\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j j\right\rangle$
- Because $j-j_{1}$ is a possible value of m_{2}, therefore, it must satisfy

$$
-j_{2} \leq j-j_{1} \leq j_{2},
$$

from which we obtain

$$
\begin{equation*}
j_{1}-j_{2} \leq j \leq j_{1}+j_{2} \tag{70}
\end{equation*}
$$

- Similarly, if we consider the CGC $\left\langle j_{1} j_{2} j-j_{2} j_{2} \mid j_{1} j_{2} j j\right\rangle$, we have

$$
-j_{1} \leq j-j_{2} \leq j_{1}
$$

leading to

$$
\begin{equation*}
j_{2}-j_{1} \leq j \leq j_{1}+j_{2} . \tag{71}
\end{equation*}
$$

Triangular Inequality.

- We can combine the results of Eqs. 70 and 71 in a single inequality

$$
\begin{equation*}
\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}, \tag{72}
\end{equation*}
$$

which is the famous triangular inequality.

- Triangular inequality is nothing but a selection rule for CGCs, in addition to the " m selection rule" derived earlier.
- If for a given pair of values of j_{1} and j_{2}, j does not satisfy triangular inequality, the corresponding CGC will surely vanish.

Orthonormality Conditions of CGCs

- Next we derive two orthonormality conditions satisfied by the CGCs
- They are quite important, although both of them can be derived quite easily using the "resolution of identity".
- We know from Eq. 59 that

$$
\left\langle j_{1} j_{2} j^{\prime} m^{\prime} \mid j_{1} j_{2} j m\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m} .
$$

- We apply the resolution of identity
$\sum_{m_{1}, m_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2}\right|=I$ on the left hand side of the equation above to obtain

$$
\sum_{m_{1}, m_{2}}\left\langle j_{1} j_{2} j^{\prime} m^{\prime} \mid j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m}
$$

- Assuming that the CGCs are real, i.e.,

$$
\left\langle j_{1} j_{2} j^{\prime} m^{\prime} \mid j_{1} j_{2} m_{1} m_{2}\right\rangle=\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle
$$

- Using this in the previous equation, we obtain the first orthonormality relation of the CGCs

$$
\begin{equation*}
\sum_{m_{1}, m_{2}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m} \tag{73}
\end{equation*}
$$

- Next, we derive the second orthonormality relation starting with (Eq. 59)

$$
\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} m_{1} m_{2}\right\rangle=\delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2}}
$$

- We insert the resolution of identity $\sum_{j, m}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right|=I$ on the left to obtain

$$
\sum_{j, m}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right\rangle=\delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2}}
$$

- Again using the reality of CGCs, we obtain our final orthonormality relation for CGCs

$$
\begin{equation*}
\sum_{j, m}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{2} m_{1} m_{2} \mid j j_{2} j m\right\rangle=\delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2}} \tag{74}
\end{equation*}
$$

- From Eqs. 73 and 74 it is obvious that CGCs form a unitary matrix
- Orthonormality condition of Eq. 73 and recursion relations (Eq. 67) are used to compute the CGCs $\left\langle j_{1} j_{2} j_{1} j-j_{1} \mid j_{1} j_{2} j\right\rangle$ which by convention are assumed to be real and positive.
- Rest of the CGCs can be obtained by further applications of the recursion relations, as will be demonstrated in the tutorial problems.

Clebsch-Gordon Series

- From the previous discussion it is easy to deduce that the number of direct product (or uncoupled) basis states $\left|j_{1} j_{2} m_{1} m_{2}\right\rangle \in \mathscr{E}=\mathscr{E}_{1} \otimes \mathscr{E}_{2}$ is identical to the number of coupled states $\left|j_{1} j_{2} j m\right\rangle$, which also belong to \mathscr{E}
- The number of direct product basis states is easy to count $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$. You will get the same number in the coupled representation also (try it yourself).
- This is because the two sets of states are connected by a unitary transformation whose matrix elements are CGCs
- There are several consequences of this, which we explore next
- The resolution of identity in the two basis sets must be identical, which means

$$
\begin{equation*}
\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2}\right|=\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{m=-j}^{j}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right| . \tag{75}
\end{equation*}
$$

- If we examine the RHS of Eq. 75 carefully, we realize that each one of the kets $\left\langle j_{1} j_{2} j m\right\rangle$ belongs to a $2 j+1$ dimensional space.
- And different values of j correspond to a different space, which is a subspace of \mathscr{E}.
- As a result, the sum on the RHS of Eq. 75 is actually a direct sum, i.e.,

$$
\begin{align*}
& \sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{m=-j}^{j}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right| \\
& \left.=\sum_{m=-\left|j_{1}-j_{2}\right|}^{\mid j_{1}-j_{1} j_{2}}\left|j_{1}-j_{2}\right| m\right\rangle\left\langle j_{1} j_{2}\right| j_{1}-j_{2}|m| \\
& \left.\oplus \sum_{m=-\left|j_{1}-j_{2}\right|-1}^{\left|j_{1}-j_{2}\right| j_{1} j_{2}}\left|j_{1}-j_{2}\right|+1 m\right\rangle\left\langle j_{1} j_{2}\right| j_{1}-j_{2}|+1 m| \tag{76}\\
& \left.\oplus \cdots \oplus \sum_{m=-\left(j_{1}+j_{2}\right)}^{j_{1}+j_{2}} j_{1} j_{2} j_{1}+j_{2} m\right\rangle\left\langle j_{1} j_{2} j_{1}+j_{2} m\right|
\end{align*}
$$

Clebsch-Gordon Series.

- Each term in the direct sum of Eq. 76 corresponds to resolution of identity in that subspace
- If we adopt the notation

$$
\begin{equation*}
\sum_{m=-j}^{j}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right|=l_{j} \tag{77}
\end{equation*}
$$

- then the Eq. 76 can be written as

$$
\begin{align*}
\sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{m=-j}^{j}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right| & =I_{\left|j_{1}-j_{2}\right|} \oplus I_{\left|j_{1}-j_{2}\right|+1} \oplus \\
& \cdots \oplus I_{j_{1}+j_{2}-1} \oplus I_{j_{1}+j_{2}} \tag{78}
\end{align*}
$$

Clebsch-Gordon Series.

- Similarly, we can write the identity of the uncoupled representation (see the LHS of Eq. 75) as

$$
\begin{align*}
& \sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle\left\langle j_{1} j_{2} m_{1} m_{2}\right| \\
& =\left(\sum_{m_{1}=-j_{1}}^{j_{1}}\left|j_{1} m_{1}\right\rangle\left\langle j_{1} m_{1}\right|\right) \otimes\left(\sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{2} m_{2}\right\rangle\left\langle j_{2} m_{2}\right|\right) \tag{79}\\
& =l_{j_{1}} \otimes I_{j_{2}}
\end{align*}
$$

- Finally, by combining Eqs. 75, 78, and 79, we have the result

$$
\begin{equation*}
I_{j_{1}} \otimes I_{j_{2}}=I_{\left|j_{1}-j_{2}\right|} \oplus I_{\left|j_{1}-j_{2}\right|+1} \oplus \cdots \oplus I_{j_{1}+j_{2}-1} \oplus I_{j_{1}+j_{2}} \tag{80}
\end{equation*}
$$

Clebsch-Gordon Series.

- Because the direct product of two identity matrices (on the LHS) is an identity matrix, we can write the previous equation in the matrix form

$$
\begin{align*}
& \left(\begin{array}{ccccc}
1 & & & & O \\
& 1 & & & \\
& & \ddots & & \\
& & & 1 & \\
O & & & 1
\end{array}\right) \tag{81}\\
& =\left(\begin{array}{ccccc}
l_{\left|j_{1}-j_{2}\right|} & & & & \\
& & \iota_{j_{1}-j_{2} \mid+1} & & \\
& & & \ddots & \\
\\
& & & & \iota_{j_{1}+j_{2}-1} \\
\\
& & & & \\
l_{j_{1}+j_{2}}
\end{array}\right)
\end{align*}
$$

where, on the LHS we have an identity matrix of dimension $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$, and on the RHS, l_{j} denotes an identity matrix of dimension $2 j+1$. Furthermore, on both the sides O denotes a null matrix block of appropriate dimensions.

Clebsch-Gordon Series..

- A similar result holds for the rotation matrices in the two bases

$$
\begin{align*}
D^{\left(j_{1}\right)}(R) \otimes D^{\left(j_{2}\right)}(R) & =D^{\left|j_{1}-j_{2}\right|}(R) \oplus D^{\left|j_{1}-j_{2}\right|+1}(R) \oplus \cdots \\
& \oplus D^{j_{1}+j_{2}-1}(R) \oplus D^{j_{1}+j_{2}}(R) . \tag{82}
\end{align*}
$$

- The RHS of the previous equation implies a block-diagonal nature of the rotation matrix in the coupled basis, which can also be expressed in the matrix form similar to the case of identity matrix (Eq. 81)

$$
\begin{aligned}
& D^{\left(j_{1}\right)}(R) \otimes D^{\left(j_{2}\right)}(R)= \\
& \left(\begin{array}{c}
D^{\left|j_{1}-j_{2}\right|} \\
\\
D^{\left|j_{1}-j_{2}\right|+1}
\end{array}\right.
\end{aligned}
$$

$$
D^{j_{1}+j_{2}-1}
$$

$$
\left.\begin{array}{c}
0 \tag{83}\\
\\
\\
D^{j_{1}+j_{2}}
\end{array}\right)
$$

Clebsch-Gordon Series

- As a matter of fact, the main reason behind the validity of results such as Eqs. 80 and 82 is that the direct product space $\mathscr{E}_{j_{1}} \otimes \mathscr{E}_{j_{2}}$ is a direct sum of the corresponding smaller subspaces

$$
\begin{equation*}
\mathscr{E}_{j_{1}} \otimes \mathscr{E}_{j_{2}}=\mathscr{E}_{j_{1}-j_{2} \mid} \oplus \mathscr{E}_{j_{1}-j_{2} \mid+1} \oplus \cdots \oplus \mathscr{E}_{j_{1}+j_{2}-1} \oplus \mathscr{E}_{j_{1}+j_{2}} \tag{84}
\end{equation*}
$$

Examples of Block-diagonal Matrices

- We give examples of a couple of block-diagonal matrices A and B below, and how they can be written as direct sums

$$
\begin{aligned}
A & =\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 5 & 6 \\
0 & 0 & 7 & 8
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \oplus\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) \\
& =A_{1} \oplus A_{2}
\end{aligned}
$$

with

$$
A_{1}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) .
$$

This means that the operator A is block-diagonal w.r.t. to the chosen basis in the original space \mathscr{E}, which can be written as the direct sum of two 2-dimensional spaces \mathscr{E}_{1} and \mathscr{E}_{2}

$$
\mathscr{E}=\mathscr{E}_{1} \oplus \mathscr{E}_{2}
$$

Let B be a 5×5 matrix

$$
\begin{aligned}
B & =\left(\begin{array}{llllc}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
7 & 8 & 9 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 3 & -2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & -1 \\
3 & -2
\end{array}\right) \\
& =B_{1} \oplus B_{2}
\end{aligned}
$$

Here clearly the 5 -dimensional space \mathscr{E} can be written as a direct sum of a 3-dimensional subspace \mathscr{E}_{1} and a 2-dimensional subspace \mathscr{E}_{2}

$$
\mathscr{E}=\mathscr{E}_{1} \oplus \mathscr{E}_{2}
$$

Clebsch-Gordon Series: Proof

- The exact mathematical form of the Clebsch-Gordon series, which is equivalent to Eqs. 82 and 83, is

$$
\begin{align*}
& D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(R) D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(R)= \\
& \sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{m, m^{\prime}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m^{\prime}\right\rangle D_{m^{\prime} m}^{(j)}(R) \tag{85}
\end{align*}
$$

Proof:

- In order to prove the result, we start with Eq. 50

$$
U_{R}^{(\mathscr{E})}=U_{R}^{\left(\mathscr{C}_{1}\right)} \otimes U_{R}^{\left(\mathscr{C}_{2}\right)},
$$

whose matrix elements in the uncoupled basis (direct-product basis) are

$$
\begin{aligned}
\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime}\right| U_{R}^{(\mathscr{E})}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle & =\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime}\right| U_{R}^{\left(\mathscr{R}_{1}\right)} \otimes U_{R}^{\left(\mathscr{R}_{2}\right)}\left|j_{1} j_{2} m_{1} m_{2}\right\rangle \\
& =\left\langle j_{1} m_{1}^{\prime}\right| U_{R}^{\left(\mathscr{E}_{1}\right)}\left|j_{1} m_{1}\right\rangle\left\langle j_{2} m_{2}^{\prime}\right| U_{R}^{\left(\mathscr{E}_{2}\right)}\left|j_{2} m_{2}\right\rangle \\
& =D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(R) D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(R)
\end{aligned}
$$

Clebsch-Gordon Series: Proof.

- Using the resolution of identity in the coupled basis $\sum_{j m}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m\right|=I$ on the LHS of the previous equation two times, and interchanging LHS and RHS, we obtain

$$
\begin{aligned}
& D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(R) D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(R)= \\
& \sum_{j . j^{\prime}, m, m^{\prime}}\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j^{\prime} m^{\prime}\right\rangle\left\langle j_{1} j_{2} j^{\prime} m^{\prime}\right| U_{R}^{(\mathscr{E})}\left|j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right\rangle
\end{aligned}
$$

- On using the reality of CGCs
$\left\langle j_{1} j_{2} j m \mid j_{1} j_{2} m_{1} m_{2}\right\rangle=\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle$, and

$$
\left\langle j_{1} j_{2} j^{\prime} m^{\prime}\right| U_{R}^{(\mathscr{E})}\left|j_{1} j_{2} j m\right\rangle=\delta_{j^{\prime} j} D_{m^{\prime} m}^{(j)}(R)
$$

we obtain the desired result

$$
\begin{aligned}
& D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)}(R) D_{m_{2}^{\prime} m_{2}}^{\left(j_{2}\right)}(R)= \\
& \sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}} \sum_{m, m^{\prime}}\left\langle j_{1} j_{2} m_{1} m_{2} \mid j_{1} j_{2} j m\right\rangle\left\langle j_{1} j_{2} m_{1}^{\prime} m_{2}^{\prime} \mid j_{1} j_{2} j m^{\prime}\right\rangle D_{m^{\prime} m}^{(j)}(R)
\end{aligned}
$$

- We will first discuss vector operators, and then generalize the discussion to define the tensor operators.
- Let us assume that there is an operator \vec{A}, called a vector operator, because its expectation value rotates as per rules of transformation of a vector, under an active rotation R.
- If the system is in state $|\psi\rangle$ we know under the rotation it will transform into $\left|\psi^{\prime}\right\rangle$ as

$$
\left|\psi^{\prime}\right\rangle=U_{R}|\psi\rangle
$$

- If \hat{e} is an arbitrary unit vector, then clearly $\overrightarrow{A . e} \hat{e}$ is a scalar and hence its value will be invariant under the rotation

$$
\begin{gather*}
\langle\psi| \vec{A} \cdot \hat{e}|\psi\rangle=\left\langle\psi^{\prime}\right| \vec{A} \cdot \hat{e}^{\prime}\left|\psi^{\prime}\right\rangle \\
\left\langle\psi^{\prime}\right| U_{R} \vec{A} \cdot \hat{e} U_{R}^{\dagger}\left|\psi^{\prime}\right\rangle=\left\langle\psi^{\prime}\right| \vec{A} \cdot \hat{e}^{\prime}\left|\psi^{\prime}\right\rangle \\
U_{R} \vec{A} \cdot \hat{e} U_{R}^{\dagger}=\vec{A} \cdot \hat{e}^{\prime} \tag{86}
\end{gather*}
$$

An example of an operator of the form $\vec{A} \cdot \hat{e}$

- As an example, let us consider

$$
\begin{aligned}
& \vec{A}=\vec{\sigma}=\sigma_{x} \hat{i}+\sigma_{y} \hat{j}+\sigma_{z} \hat{k} \\
& \hat{e}=\frac{1}{\sqrt{3}} \hat{i}+\frac{\hat{1}}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}
\end{aligned}
$$

then clearly

$$
\begin{aligned}
& \vec{A} \cdot \hat{e}=\frac{1}{\sqrt{3}}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \vec{A} \cdot \hat{e}=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
1 & 1-i \\
1+i & -1
\end{array}\right)
\end{aligned}
$$

- \hat{e} transforms into $\hat{e^{\prime}}$ after the rotation. But, in a Cartesian basis

$$
\begin{equation*}
\hat{e}_{i}^{\prime}=\sum_{j} R_{i j} \hat{e}_{j} \tag{87}
\end{equation*}
$$

- Upon substituting this above, we obtain

$$
\begin{gathered}
\sum_{k} U_{R} A_{k} U_{R}^{\dagger} \hat{e}_{k}=\sum_{i} A_{i} \hat{e}_{i}^{\prime} \\
\sum_{k} U_{R} A_{k} U_{R}^{\dagger} \hat{e}_{k}=\sum_{i} \sum_{j} A_{i} R_{i j} \hat{e}_{j}
\end{gathered}
$$

- Comparing coefficients of \hat{e}_{j} on both the sides, we have

$$
\begin{equation*}
U_{R} A_{j} U_{R}^{\dagger}=\sum_{i} A_{i} R_{i j} \tag{88}
\end{equation*}
$$

- Let us consider an infinitesimal rotation about an axis \hat{n}, by an angle. Then, to the first order

$$
\begin{equation*}
U_{R}=e^{\frac{-i(J \cdot \hat{h}) \varepsilon}{\hbar}} \approx I-\frac{i(\vec{J} . \hat{n}) \varepsilon}{\hbar} \tag{89}
\end{equation*}
$$

- One can show that under such a rotation, to the first order in ε

$$
\begin{equation*}
\hat{e^{\prime}} \approx \hat{e}+\varepsilon \hat{n} \times \hat{e}+O\left(\varepsilon^{2}\right) \tag{90}
\end{equation*}
$$

- Substituting Eq.(90) and Eq.(89) in 86, we obtain

$$
\begin{aligned}
\left(I-\frac{i(\vec{J} \cdot \hat{n}) \varepsilon}{\hbar}\right) \vec{A} \cdot \hat{e}\left(I+\frac{i(\vec{J} \cdot \hat{n}) \varepsilon}{\hbar}\right) & =\vec{A} \cdot \hat{e}+\varepsilon \vec{A} \cdot(\hat{n} \times \hat{e}) \\
& =\vec{A} \cdot \hat{e}+\varepsilon(\vec{A} \times \hat{n}) \cdot \hat{e} \\
& =(\vec{A}-\varepsilon \hat{n} \times \vec{A}) \cdot \hat{e}
\end{aligned}
$$

- Neglecting terms $O\left(\varepsilon^{2}\right)$, and comparing other terms on both sides, we obtain

$$
\begin{gather*}
\frac{-i}{\hbar} \varepsilon \vec{J} \cdot \hat{n} \vec{A}+\frac{i}{\hbar} \varepsilon \vec{A} \vec{J} . \hat{n}=-\varepsilon \hat{n} \times \vec{A} \\
{[\vec{A}, \vec{J} \cdot \hat{n}]=i \hbar \hat{n} \times \vec{A}} \tag{91}
\end{gather*}
$$

- Using Einstein convention, we have

$$
\vec{J} . \hat{n}=\sum_{i} J_{j} \hat{n}_{j} \equiv J_{j} \hat{n}_{j}
$$

- Also,

$$
(\hat{n} \times A)_{i}=\varepsilon_{i j k} \hat{n}_{j} A_{k}
$$

- On substituting these above for the i-th component of Eq.(91), we obtain

$$
\begin{equation*}
\left[A_{i}, J_{j}\right]=i \hbar \varepsilon_{i j k} A_{k} \tag{92}
\end{equation*}
$$

- Note that this is a very profound general relation satisfied by a vector operator \vec{A}
- Unlike Eq. 88, this relation (Eq. 92) does not depend on the nature of rotation (rotation axis, or the angle of rotation) in any way.
- It just involves commutation relations of various Cartesian components of \vec{A} with Cartesian components of the angular momentum operator
- Next we define a tensor operator as a generalization of a vector operator.
- We saw that a vector operator \vec{A} transforms according to Eq.(88) under a rotation.
- We define a spherical tensor operator T_{k}^{q} $(q=-k,-k+1, \ldots, k-1, k)$ of rank k as the operator which transforms according to the rule

$$
\begin{equation*}
U_{R} T_{k}^{q} U_{R}^{\dagger}=\sum_{q^{\prime}=-k}^{k} T_{k}^{q^{\prime}} D_{q^{\prime} q}^{(k)}(R) \tag{93}
\end{equation*}
$$

- According to this definition, an object of rank $k=1$, is a spherical vector. Let us see how $Y_{I}^{m}(\theta, \phi)$ transform for $I=1$. We saw earlier

$$
\begin{equation*}
Y_{I}^{m}\left(\theta^{\prime}, \phi^{\prime}\right)=\sum_{m^{\prime}=-I}^{l} Y_{I}^{m^{\prime}}(\theta, \phi) D_{m^{\prime}, m}^{(I)} \tag{94}
\end{equation*}
$$

- where $Y_{l}^{m}\left(\theta^{\prime}, \phi^{\prime}\right)$ is the same function with respect to the rotated coordinate system. Noting that

$$
U_{R} Y_{l}^{m}(\theta, \phi) U_{R}^{\dagger}=Y_{l}^{m}\left(\theta^{\prime}, \phi^{\prime}\right)
$$

- we find that Eq.(93) and Eq.(94) have the same form. Thus Y_{m}^{l} 's are tensor operators of rank $/$. Coming back to the case of $I=1$, we have

$$
\begin{aligned}
Y_{1}^{ \pm 1}(\theta, \phi) & =\mp \sqrt{\frac{3}{8 \pi}} e^{ \pm i \phi} \sin \theta \\
& =\mp \sqrt{\frac{3}{8 \pi}}(\sin \theta \cos \phi \pm i \sin \theta \sin \phi)
\end{aligned}
$$

- Which can be expressed in terms of Cartesian coordinates

$$
\begin{align*}
Y_{1}^{ \pm 1}(\theta, \phi) & =\mp \sqrt{\frac{3}{8 \pi}} \frac{(x \pm i y)}{r} \tag{95}\\
Y_{1}^{0}(\theta, \phi) & =\sqrt{\frac{3}{4 \pi}} \cos \theta=\sqrt{\frac{3}{4 \pi}} \frac{z}{r}
\end{align*}
$$

- So for this case Eq.(94) yields

$$
\begin{equation*}
\left(-\frac{x^{\prime}+i y^{\prime}}{\sqrt{2}}, z^{\prime}, \frac{x^{\prime}-i y^{\prime}}{\sqrt{2}}\right)=\left(-\frac{x+i y}{\sqrt{2}}, z, \frac{x-i y}{\sqrt{2}}\right) D_{(R)}^{(1)} \tag{96}
\end{equation*}
$$

- Using this, we can define the components of a spherical tensor, when the Cartesian components of a vector operator are given

$$
\begin{align*}
T_{1}^{ \pm 1} & =\mp \frac{A_{x} \pm i A_{y}}{\sqrt{2}} \tag{97}\\
T_{1}^{0} & =A_{z}
\end{align*}
$$

Commutation Relations

- For an infinitesimal rotation of angle ε, about an axis along the direction \hat{n}, we have from Eq.(93)

$$
\left(I-\frac{i}{\hbar} \vec{J} . \hat{n} \varepsilon\right) T_{k}^{q}\left(I+\frac{i}{\hbar} \vec{J} . \hat{n} \varepsilon\right)=\sum_{q^{\prime}=-k}^{k} T_{k}^{q^{\prime}}\left\langle k q^{\prime}\right| I-\frac{i}{\hbar} \vec{J} . \hat{n} \varepsilon|k q\rangle
$$

- Above we used the fact that $D_{q^{\prime}, q}^{(k)}(R)=\left\langle k q^{\prime}\right| U_{R}|k q\rangle$, and for an infinitesimal rotation $U_{R} \approx I-\frac{i}{\hbar} \vec{J}$. $\hat{n} \varepsilon$

$$
\begin{align*}
& \Rightarrow T_{k}^{q}+\frac{i}{\hbar}\left[T_{k}^{q}, \vec{J} . \hat{n}\right] \varepsilon+O\left(\varepsilon^{2}\right)=T_{k}^{q}-\frac{i}{\hbar} \varepsilon \sum_{q^{\prime}=-k} T_{k}^{q^{\prime}}\left\langle k q^{\prime}\right| \vec{J} . \hat{n}|k q\rangle \\
& \Rightarrow\left[\hat{n} . \vec{J}, T_{k}^{q}\right]=\sum_{q^{\prime}=-k}^{k} T_{k}^{q^{\prime}}\left\langle k q^{\prime}\right| \hat{n} . \vec{J}|k q\rangle \tag{98}
\end{align*}
$$

Commutation Relations(contd.)

- Taking $\hat{n}=\hat{k}$, we obtain above

$$
\begin{equation*}
\left[J_{z}, T_{k}^{q}\right]=q \hbar T_{k}^{q} \tag{99}
\end{equation*}
$$

- and $\hat{n}=\hat{n}_{ \pm}=\hat{i} \pm i \hat{j}$, so that

$$
\vec{J} . \hat{n}=J_{ \pm}
$$

- and using the fact that

$$
J_{ \pm}|k q\rangle=\hbar \sqrt{(k \mp q)(k \pm q+1)}|k q \pm 1\rangle
$$

- we obtain

$$
\begin{equation*}
\left[J_{ \pm}, T_{k}^{q}\right]=\hbar \sqrt{(k \mp q)(k \pm q+1)} T_{k}^{q \pm 1} \tag{100}
\end{equation*}
$$

Eq.(99) and Eq.(100) are fundamental commutation relations of tensor operators.

- Let us compute the matrix elements of both sides of Eq. 93, with respect to angular momentum eigenstates $|\alpha j m\rangle$ and $\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle$, where α, α^{\prime} quantum numbers other than angular momentum, which are needed to specify these states completely

$$
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| U_{R} T_{k}^{q} U_{R}^{\dagger}|\alpha j m\rangle=\sum_{q^{\prime}=-k}^{k}\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| T_{k}^{q^{\prime}}|\alpha j m\rangle D_{q, q^{\prime}}^{(k)}
$$

- Using resolution of Identity two times on the L.H.S., we have

$$
\begin{aligned}
& \sum_{\mu, \mu^{\prime}}\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| U_{R}\left|\alpha^{\prime} j^{\prime} \mu^{\prime}\right\rangle\left\langle\alpha^{\prime} j^{\prime} \mu^{\prime}\right| T_{k}^{q}|\alpha j \mu\rangle\langle\alpha j \mu| U_{R}^{\dagger}|\alpha j m\rangle \\
&=\sum_{q^{\prime}=-k}^{k}\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| T_{k}^{q^{\prime}}|\alpha j m\rangle D_{q, q^{\prime}}^{(k)}
\end{aligned}
$$

Wigner-Eckart Theorem(contd.)

- but

$$
\begin{aligned}
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| U_{R}\left|\alpha^{\prime} j^{\prime} \mu^{\prime}\right\rangle=D_{m^{\prime}, \mu^{\prime}}^{\left(j^{\prime}\right)}(R) & \\
& \langle\alpha j \mu| U_{R}^{\dagger}|\alpha j m\rangle=D_{m, \mu}^{(j) *}(R)
\end{aligned}
$$

- we obtain

$$
\begin{array}{r}
\sum_{\mu, \mu^{\prime}} D_{m^{\prime}, \mu^{\prime}}^{\left(j^{\prime}\right)}(R)\left\langle\alpha^{\prime} j^{\prime} \mu^{\prime}\right| T_{k}^{q}|\alpha j \mu\rangle D_{m, \mu}^{(j) *}(R) \\
=\sum_{q^{\prime}=-k}^{k}\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| T_{k}^{q^{\prime}}|\alpha j m\rangle D_{q, q^{\prime}}^{(k)} \tag{101}
\end{array}
$$

- we can recast C-G series of Eq.(85) as (proof is given in problem 1 of tutorial sheet \# 2)

$$
\begin{array}{r}
\sum_{\mu, \mu^{\prime}} D_{m^{\prime}, \mu^{\prime}}^{\left(j^{\prime}\right)}(R)\left\langle j k m q \mid j k j^{\prime} \mu^{\prime}\right\rangle D_{m, \mu}^{(j) *}(R) \\
=\sum_{q^{\prime}=-k}^{k}\left\langle j k m q^{\prime} \mid j k j^{\prime} m^{\prime}\right\rangle D_{q, q^{\prime}}^{(k)} \tag{102}
\end{array}
$$

- Eq.(101) can be seen as a linear homogeneous equation for $\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| T_{k}^{q^{\prime}}|\alpha j m\rangle$ and Eq.(102) has the same coefficient except that it has unknowns $\left\langle j k m q^{\prime} \mid j k j^{\prime} m^{\prime}\right\rangle$.
- Thus, the solutions of two equations, must be proportional to each other. Thus

$$
\begin{align*}
\left\langle\alpha^{\prime} j^{\prime} m^{\prime}\right| T_{k}^{q}|\alpha j m\rangle= & \left\langle j k m q \mid j k j^{\prime} m^{\prime}\right\rangle \tag{103}\\
& \left\langle\alpha^{\prime} j^{\prime}\left\|T_{k}\right\| \alpha j\right\rangle,
\end{align*}
$$

we also changed $q^{\prime} \rightarrow q$.

- where the proportionality constant $\left\langle\alpha^{\prime} j^{\prime}\left\|T_{k}\right\| \alpha j\right\rangle$ is called the reduced Matrix element.
- They depend only on $\alpha, \alpha^{\prime}, j, j^{\prime}$, and not on m, m^{\prime}, and q because that dependence is contained in the C-G-C $\left\langle j k m q \mid j k j^{\prime} m^{\prime}\right\rangle$ Eq.(103) is called the Wigner-Eckart theorem.

Wigner-Eckart Theorem(contd.)

- The importance of Wigner-Eckart theorem lies in the fact that the required matrix element is written as a product of C-G-C which contains the symmetry related information, and reduced matrix element which contains information about other properties of the system.
- From the CGC involved in the Wigner-Eckart theorem Eq.(103), we get two important selection rules which determine whether a given matrix element is zero, based just on the symmetry. We know that the CGC $\left\langle j k m q \mid j k j^{\prime} m^{\prime}\right\rangle$ is non zero only if
(1) m selection rule is valid, i.e.,

$$
\begin{align*}
& m^{\prime}=m+q \\
\Rightarrow & q=m^{\prime}-m \tag{104}
\end{align*}
$$

(2) Triangular Identity is valid, i.e.,

$$
|j-k| \leq j^{\prime} \leq j+k
$$

But triangular identity of numbers holds for all three numbers

$$
\begin{equation*}
\Rightarrow\left|j-j^{\prime}\right| \leq k \leq j+j^{\prime} \tag{105}
\end{equation*}
$$

Examples:

(1) For a scalar operator

$$
k=0 \Rightarrow q=0 \Rightarrow \Delta m=m^{\prime}-m=0
$$

and

$$
\Delta j=j^{\prime}-j=0 \Rightarrow j=j^{\prime}
$$

(2) For a vector operator

$$
\begin{gathered}
k=1, q=0, \pm 1 \\
\Rightarrow \Delta m=0, \pm 1 \quad \text { and } \quad \Delta j=j^{\prime}-j=0, \pm 1
\end{gathered}
$$

- For a vector operator \vec{A}, with spherical components A_{1}^{q} or A^{q} for short,

$$
\left\langle\alpha^{\prime} j m^{\prime}\right| A^{q}|\alpha j m\rangle=\frac{\left\langle\alpha^{\prime} j m\right| \vec{J} \cdot \vec{A}|\alpha j m\rangle}{\hbar^{2} j(j+1)} \times\left\langle j m^{\prime}\right| J^{q}|j m\rangle
$$

- Proof: We have

$$
\begin{aligned}
\vec{J} . \vec{A}= & J_{x} A_{x}+J_{y} A_{y}+J_{z} A_{z} \\
= & \frac{1}{2}\left(J_{x}+i J_{y}\right)\left(A_{x}-i A_{y}\right) \\
& +\frac{1}{2}\left(J_{x}-i J_{y}\right)\left(A_{x}+i A_{y}\right)+J_{z} A_{z} \\
= & -J^{+1} A^{-1}-J^{-1} A^{+1}+J^{0} A^{0}
\end{aligned}
$$

where

$$
\begin{aligned}
A^{ \pm 1} & =\mp \frac{1}{\sqrt{2}}\left(A_{x} \pm i A_{y}\right) \\
A^{0} & =A_{z}
\end{aligned}
$$

$$
\begin{aligned}
J^{ \pm 1} & =\mp \frac{1}{\sqrt{2}}\left(J_{x} \pm i J_{y}\right)=\mp \frac{1}{\sqrt{2}} J_{ \pm} \\
J^{0} & =J_{z}
\end{aligned}
$$

with this

$$
\begin{aligned}
\left\langle\alpha^{\prime} j m\right| \vec{J} . \vec{A}|\alpha j m\rangle= & \left\langle\alpha^{\prime} j m\right| J^{0} A^{0}-J^{+1} A^{-1}-J^{-1} A^{+1}|\alpha j m\rangle \\
= & m \hbar\left\langle\alpha^{\prime} j m\right| A^{0}|\alpha j m\rangle \\
& +\frac{\hbar}{\sqrt{2}} \sqrt{(j+m)(j-m+1)}\left\langle\alpha^{\prime} j m-1\right| A^{-1}|\alpha j m\rangle \\
& -\frac{\hbar}{\sqrt{2}} \sqrt{(j-m)(j+m+1)}\left\langle\alpha^{\prime} j m+1\right| A^{+1}|\alpha j m\rangle
\end{aligned}
$$

- But from Wigner-Eckart theorem

$$
\begin{aligned}
& \left\langle\alpha^{\prime} j m\right| A^{0}|\alpha j m\rangle \propto\left\langle\alpha^{\prime} j m\right| A^{+1}|\alpha j m\rangle \\
& \propto\left\langle\alpha^{\prime} j m\right| A^{-1}|\alpha j m\rangle \propto\left\langle\alpha^{\prime} j\|\vec{A}\| \alpha j\right\rangle
\end{aligned}
$$

- where $\left.\left\langle\alpha^{\prime} j\right||\vec{A}| \alpha j\right\rangle$ is the reduced Matrix element of \vec{A}, independent of m and q . Thus,

$$
\left\langle\alpha^{\prime} j m\right| \vec{J} . \vec{A}|\alpha j m\rangle=C(j, m)\left\langle\alpha^{\prime} j\|\vec{A}\| \alpha j\right\rangle
$$

- where $C(j, m)$ is a constant which depends on j and m, and is independent of α, α^{\prime}, and \vec{A}.
- Furthermore, $C(j, m)$ must be independent of m as well because $\vec{J} . \vec{A}$ is a scalar operator, thus

$$
\left\langle\alpha^{\prime} j m\right| \vec{J} . \vec{A}|\alpha j m\rangle=C(j)\left\langle\alpha^{\prime} j\|\vec{A}\| \alpha j\right\rangle
$$

- This will be valid also for $\vec{A}=\vec{J}$, with $\alpha^{\prime}=\alpha$

$$
\langle\alpha j m| J^{2}|\alpha j m\rangle=C(j)\langle\alpha j\|\vec{J}\| \alpha j\rangle
$$

but $\langle\alpha j m| J^{2}|\alpha j m\rangle=j(j+1) \hbar^{2}$

$$
\begin{gather*}
\Rightarrow C(j)=\frac{j(j+1) \hbar^{2}}{\langle\alpha j||\vec{J} \| \alpha j\rangle} \\
\Rightarrow\left\langle\alpha^{\prime} j m\right| \vec{J} \cdot \vec{A}|\alpha j m\rangle=\frac{j(j+1) \hbar^{2}\left\langle\alpha^{\prime} j\|\vec{A}\| \alpha j\right\rangle}{\langle\alpha j\|\vec{J}\| \alpha j\rangle} \tag{106}
\end{gather*}
$$

- using Wigner-Eckart theorem, we have

$$
\Rightarrow\left\langle\alpha^{\prime} j m^{\prime}\right| A^{q}|\alpha j m\rangle=\left\langle j 1 m q \mid j 1 j m^{\prime}\right\rangle\left\langle\alpha^{\prime} j\|\vec{A}\| \alpha j\right\rangle
$$

and

$$
\Rightarrow\left\langle\alpha j m^{\prime}\right| J^{q}|\alpha j m\rangle=\left\langle j 1 m q \mid j 1 j m^{\prime}\right\rangle\left\langle\alpha^{\prime} j\right||\vec{J} \| \alpha j\rangle
$$

- Taking the ratio of these two equations, we have

$$
\begin{equation*}
\frac{\left.\left\langle\alpha^{\prime} j\right||\vec{A}| \alpha j\right\rangle}{\left.\left\langle\alpha^{\prime} j\right||\vec{J}| \alpha j\right\rangle}=\frac{\left\langle\alpha^{\prime} j m^{\prime}\right| A^{q}|\alpha j m\rangle}{\left\langle\alpha j m^{\prime}\right| J^{q}|\alpha j m\rangle} \tag{107}
\end{equation*}
$$

- on substituting Eq.(107) in Eq.(106) we obtained the desired result

$$
\begin{equation*}
\left\langle\alpha^{\prime} j m^{\prime}\right| A^{q}|\alpha j m\rangle=\frac{\left\langle\alpha^{\prime} j m\right| \vec{J} \cdot \vec{A}|\alpha j m\rangle}{j(j+1) \hbar^{2}} \times\left\langle j m^{\prime}\right| J^{q}|j m\rangle \tag{108}
\end{equation*}
$$

- The importance of projection theorem is that it shows that the expectation value of any vector operator is proportional to the expectation value of the angular momentum operator.
- This implies that any vector associated with a spherically symmetric quantum mechanical system will be either parallel or anti parallel to its angular momentum.

