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Summary of the Chapter

In this chapter we discuss two approaches for obtaining approximate
solutions of time-independent Schrodinger equation. The first is a
variational approach called Rayleigh-Ritz variational principle, while
the other one is called perturbation theory. Noteworthy point is
that both approaches are, in principle, applicable to problems which
are exactly solvable along with those for which no exact solution is
available. Next, we will discuss these approaches in detail.



Rayleigh-Ritz variational Approach

Rayleigh-Ritz variational Approach

@ This approach is aimed at obtaining a solution to the ground
state energy and wave function of the system.

@ It involves taking a trial wave function for the problem, and
then computing the energy of the system as expectation value
of its Hamiltonian.

@ In order to obtain its value, the energy is minimized with
respect to the parameters in the wave function

@ This leads us to equations for those parameters, which can be
solved to obtain their values.

@ For these values of the parameters, the wave function becomes
the best possible solution, yielding the lowest ground state
energy for all wave functions of that mathematical form.
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Upper Bound Condition

@ Let H be a Hamiltonian whose exact eigenvalues and
eigenfunctions are E; and |1;) respectively.

Hpi) = Eili) (1)

@ Let us consider another wave function |¢/), and examine the
energy expectation value with respect to it

 WlHW)
=) @)

@ because [¢);) form a complete basis, therefore, we can expand
|1) in terms of them

) = cilvi) (3)

1



Upper Bound Condition(contd.)

@ assuming that |¢);) form an orthonormal set

(Wily) = 65 (4)
@ On substituting in Eq. 2, we have
o ZiJ Cfci<¢j‘H‘1/’i>
Zi,j CfCi<¢j¢i>

On using Eqgs. 1 and 4, we obtain

2 E E ]2

E:Z’|CI’2EIZ O(Z"C12|)ZE0
>_ileil (Xileil?)

@ this argument holds because E; > Ej (the true ground state
energy) and because |c;|2 > 0.

E

@ This means that the energy corresponding to an arbitrary wave
function [¢)) will always be greater than the true ground state
of the system.

@ The equality holds only if [¢)) = |1)o).



Upper Bound Condition(contd.)

This means that the energy expectation value with respect to
an arbitrary wave function serves as an upper bound for the
ground state energy.

This suggests a procedure for obtaining a decent
approximation to the ground state energy.

Choose a trial wave function with an unknown set of
variational parameters (say «j,i =1,...,m).

Next, compute the energy expectation value with respect to
this trial wave function [¢(c;))

(¥ (ei)|Hl(ai))
E(aj) =
() = o v ©
Minimize E(c«;), with respect to «; using the condition
OE (o )
8(0?;):0,1:1,...,m (6)

Solution of Eq.(6) will yield values of «j, which can be
substituted in Eq.(5) to obtain E,;, > Ep. We will

demonstrate this by a few examples.



Example(l): Simple Harmonic Oscillator

@ Let us estimate the ground state of one-dimensional simple
harmonic oscillator using the trial wave function of the form
_ 2
Y(x) = ce™
@ Because this function is of the form of the exact wave
function, the obtained energy should be the exact ground state
energy %‘" Let us first normalize 1 (x)

(e}

Wi = ¢ [ e -1

—0o0

@ Substitute t = v/2ax

C2 o0 71.2 2 ™
:><w|w>:m e tdt=c zzl

- ()"

@ Above we used the value of the Gaussian integral

1= e dt = /7.



Simple Harmonic Oscillator(contd.)

o Now

_ (WlHY) _ \/% e M e
) ="y = w/_ooe (= 3mae®
1 2.2

+ Emw X e‘ax2>dx

o But

o o2
= —2ae ™ + 4a°x%e ax)

2a [ h? d? 1
R e e O



Simple Harmonic Oscillator(contd.)

@ using the standard integral

o0 x2 2n+1 _ |
/ x*Me” 2 dx = \/%—a (22: L)!
@ we have - Jr
2 —2ax? _vs
/oox e dx = (—m>
@ so that
/2a A nt 74 VT 1
2a 2 (2a)3/2
+ w2 VT V2
277 (a2
K2 mw?
E(a) {ana ™ }
dE K2 mw?



Simple Harmonic Oscillator(contd.)

]
Sa=Tv
2h
:>E'_h2mw+mw2><mw
M 9m 2h 8 2k
= | E; —@4_@_@
mnTog 4 2 7

which, as expected, is nothing but the exact value of the
ground state energy!

@ Furthermore, for this value of a, the wave function is also the
exact ground state wave function

mw 1/4 _ mwx?

v = (T0) e = yo(x)

@ Thus, as expected, we recover the exact ground state energy
and the wave function for this trial wave function



Example(ll): One-Dimensional Box

@ Next, let us try to estimate the ground state energy of a
particle of mass m, confined to move in a one dimensional box
of length a, with infinite potential at the boundaries (x = 0, a).

@ We consider the trial function to be a linear function which is
zero at x = 0 and x = a, and is peaked at x = o, 0 < @ < 3,
where « is a variational parameter.




Particle in a one-dimensional box...

@ Clearly, this trial wave function is given by

¢(x)=¢1(x)=%for0gxga
w(x)zwz(x):mforagxga

(x) =0 elsewhere



One-Dimensional Box(contd.)

@ Next, we obtain the normalization constant

a N2 a N2 a
2 _ N 2 Ry
/0 P (x)dx = " /0 x“dx + (a—ay /a (a — x)“dx

N2 N2
= 3a+?(a—a):1
N2
2 oa=1
3a
N=y/2
a
3 x
= 1(x) = o
3




One-Dimensional Box(contd.)

@ Now the standard form
= (P|H[Y) = /w {- v2 + Viydr

is not valid here because v(x) is discontinuous at x = .

@ For such cases one uses the alternative expression

/{ Vw Vw + Vy*ptdr

which can be obtained by integrating by parts the first term
and using the fact that the wave function vanishes at infinity.

@ For the present case ¥* = and V =0, so that

Ela) = Qm/o (Zf) dx

“an |, (G g [ (G



One-Dimensional Box(contd.)

@ oOr
3
Ee) =5 a2/ dx + e /dx

ZCH@U_J

2
G w a)

= a—a==t«o

@ The only meaningful solution is
da=a=a=-
a=a=a=_
2

e And

a ma?



One-Dimensional Box(contd.)

h2r2 N 5hK2

2

Eo(exact) = m ~ E

= Emin > EO

@ If we plot the true ground state wave function
o = \/gsin(%x) along with the approximate wave function
1(x) is obtained above, we have
WX

s 61

Q
X

Figure: Comparision between Exact and Approximate wave function

o We note that a = 5 obtained through variational principle
ensures that the variational wave function peaks at the same

x = 5, as the exact wave function.



Time-Independent Perturbation Theory

@ Time-independent, or static, perturbation theory is another
mathematical approach for obtaining approximate solutions of
time-independent Schrédinger equation, if the Hamiltonian
differs from an exactly solvable model by an additive term.

@ Let us assume that the Hamiltonian in question is

H=H+V (7)
@ For which the time independent Schrodinger equation has
been solved . o (o
Holvs) = EV|4) (8)
@ And our aim is to solve
HW’n> = En’¢n> (9)

o Approximately, because its exact solutions are unknown. The
underlying argument behind perturbation theory is that if
V(called perturbation) is small compared to Hp, then the
solutions of Eq.(9) can be developed in terms of solutions of
Eq.(8).



Time Independent Perturbation Theory

@ Because of the smallness of V, E,/|1¢,) are expected to be
close to E£°)/\¢$,°)>.

@ It is mathematically helpful to introduce a real parameter
A(0 < A <1), and consider the Hamiltonian

H=Hy+ AV (10)

@ With this, one expects that as A varies from A =0to A =1,

the eigenvalues and eigenvectors will evolve smoothly from
2 10”) 0 En/|tn).

@ That will allow us to obtain eigenvalues and eigenvectors as a
function of A, and then we will set A = 1, to obtain the desired
solutions.

@ We assume that eigenvalues and eigenvectors of the new
Hamiltonian Eq.(10) can be expanded in the powers of A

[n) = [0 + A8y + 221 + .. (11)
En=E + xEM + X2EP 4. (12)



Time Independent Perturbation Theory

@ We can also assume that the wave function of the unperturbed
Hamiltonian is properly normalised W)(O)W(O)) =1, while for
the perturbed wave function we assume the so-called
intermediate normalization.

WD) =1 (13)
e Eq.(11) to Eq.(13) yields
W) = W)+ A WO+ X2 @)+ =1

e Using <w,(,0)|w,(,o)) =1, we have

W) =0 fori=1,2,... (14)

@ Next we substitute Eq.(11) and Eq.(12) in the perturbed
eigenvalue problem (Eq. 9)

(HO + )\V)|¢n> = En|¢n>



Time Independent Perturbation Theory

@ and compare the coefficients on both sides of the same power
of A

(Ho + AV) {08y + A[pS) + A2y + ...} = (B + AEM
R2ER) )l + A X2l + )

= Holw®y = ES () (15)
Hol$) + Vi) = ED gDy + EP i) (16)
Hol[$) + v IptDy = EQ )+ EM [y + EP ) (17)

e Or, in general, on comparing coefficients of A\’ on both the
sides we obtain

HoloS) + VIS ™y = E i)+ B | oy 4L B0l
(18)



Time Independent Perturbation Theory

@ On taking the inner product of Eq.(18) with _|1p$,0)) and using
Eq.(14) we obtain a recursive equation of 3%

EY = Qv [yl (19)

@ To obtain corrections to the wave function, we expand \w,(,'))
in terms of eigenvectors of Hpy, which form a complete basis

Wiy =" D)
k

@ because ]
(W un) = 0

@ implies that the sum above must not include |1/)$,0)> term which
we indicate by a prime

W =3 D) =37 @) (20)
K’ k+#n



Time Independent Perturbation Theory

()

@ To determine the unknown coefficients Cin »
product of Eq.(18) with [1){”)
(WO Hol ) + (V| VI ) = {1y +
ED @Ol )+
i)/ 1.(0),,(0)
WO

—_——
=0 because j#n

we take the inner

e Using Eq.(20) and orthonormality condition of \wj@)ys, ie.
<w}0)\w§0)> = 0jj also
0 0), (0
(W O1Ho = E° (¥
e We have

EO + (yOVipi D) = B0

J J
EDD L EDLD 4 gD



Time Independent Perturbation Theory

= (B — E)el) = (¢ viul V) — BN+

Jn in
- E,(,ifl)cj(,:)
(i) _ 1 © v /1,,0-D\ _ £ (-1)
= _(E,SO)—EJ-(O)){<1/]] VIpE™) — BN +
(21)

(i-1) (1)
E, Cin }

@ The equation is a recursive relation expressing i-th order
correction to [¢,) in terms of lower order correction.



Time Independent Perturbation Theory

o Next, we self consistently iterate energy correction Eq.(19) and
wave function correction Eq.(21), to obtain expressions for
these corrections order by order

o Substituting i = 1, Eq.(19) yields

ES) = V1) = (V) (22)

from Eq.(21) we have
() (0)
o (@)

P S — 23
= CJ,, (E,(,O) B EJ(O)) ( )
Vi)
= [y = <’|¢<°>> (24)
; (E,SO) _ l_:}o)) J

Eq.(22) implies that first order correction to the energy to the
n-th level is nothing but the expectation value of the
perturbing potential V with respect to unperturbed wave
function.



Time Independent Perturbation Theory

o Fori=2, E? = <1/1(0)|V]1/1(1)>, using Eq.(24) we have

(
B =3 i lv r{@ . |¢0>|¢(0)>}

0 0
j#n (£ — E)

0y ()| VI{?)[2
o (0) (0)
i (En7 = E7)

and

2 _ 1 OOy 1) (1)
Cin = (E,SO)—EJ(O)){<wJ |VIn ") — En Cin }
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Time Independent Perturbation Theory

on substituting the values of \w,(,l)> and E{V)

@y W VIS W vIes)

Cjn 0 0 0 DN
" E - EED - ED)

, we have

(26)
<¢}0)| VIS (8O [V [0y
(E9 — Ej(o))z
Substituting this i |w$2)> = 30 1), we have
VI @OV Iyl
o= T3 VYD )
iy kin E e (27)
(] W; D11 [680) (0 v 1580y o
.i#zn (E,(,O) _Ej(o))z W’J )

From Eq.(25) and Eq.(27), it is obvious that with increasingly
higher orders, formulas of perturbation expansions; heceame



Time Independent Perturbation Theory

more and more complex. For such orders, one normally uses
computers to evaluate these corrections.
Points to be noted:

© Beacause finally we set A = 1, there is no guarantee that the
perturbation series converges, unless the perturbation V is
truly small with respect to Hp.

@ Perturbation series does not have variational property. That is,
if we truncate the series at a given order, the obtained energy
could be smaller than the true energy.

© We note that if there are states Ej(o) = ,(,0), i.e., n-th level is

degenerate, the corresponding

o @Ovpd)
A ORI O
n J

and perturbation theory will diverge. Thus, this approach is
applicable only to non degenerate energy levels.



Example (I):Charged 1D SHO in an Electric Field

@ Let us assume that a particle of mass m, carrying a charge q,
is executing simple harmonic motion of frequency w. Clearly
its Hamiltonian is

2
p 1 55
Hy = — + —mw-x 28
b=5-+3 (28)

o If we now apply an Electric Field E = Ey7, where Ey has no
position or time dependence, an additional potential
V = —qEpx is introduced in the Hamiltonian, and the
modified Hamiltonian is

2
1
H:'D—%—fmw2

2 —_—
>m 3 x° — qEox (29)

S H=Hy+V (30)

@ Assuming that V is a weak perturbation compared to Hp, we
can apply perturbation theory to this problem, treating Hp to
be the unperturbed Hamiltonian.



(a).Exact Solution

@ However this problem can also be solved exactly, as shown
next. Thus, this problem allows us to compare the exact
solution with those obtained using the perturbation theory.

@ We have to solve time dependent Schrddinger equation

h? d? 1

@ Let us write the potential term as a “perfect square”

1
V' = Emwzx2 — qEgx
1 2qE
= omet{ =)

1, aEo \*  ¢°E}
= 7m X — —— I
oM mw? m2wt



Exact Solution

e Or -
1 E E
V' = Zmw? <x - qo) ~ IR (32)

2 mw? 2mw?

o If we substitute this in Eq.(31) and make the transformation

E
X o=x— 10 (33)

@ And use




Exact Solution

@ which leads to a new eigenvalue problem

2 d* 1, 5 :
e where
2p2
q°Eg
E'=FE 35
T o m? (35)
@ Eq.(34) has the form of eigenvalue problem of a1D SHO,
therefore, it will have the same solutions
1
_n _ 4
Un(x) =27 (n)) 2 (’;_;"")
. (36)

e o x? H, (1 / ?x')




Exact Solution

@ and - .
_ 9L
E,/.'—En+2m 2<n—|—2>hw
1 2E2
En={(n+ ¢ . 02
2 2mw (37)
= 2E2
E. = E(O) . q Lo
i n 2mw?




(b).Perturbation Theoretic Solution

@ On treating V = —qgEgx as a small perturbation, with Hy as
the reference Hamiltonian, we have

E) = <n + 1) fuw (38)

(39)

Let’s calculate perturbation corrections, order by order
e First Order correction
ES = @ V]e)

= —qE (Y |x[y{)
=0



Perturbation Theoretic Solution

o Because wf,o)(x) have a definite parity w.r.t. x — —x;
S,O)(—x) = (—1)”1/120)(x) while x is an odd parity operator.
Thus, the integrand is odd parity, leading to a zero integral.
@ And, the first-order correction to the n-th eigenfunction is

I (s 1vipl)
7 (B — )

— g oZ <¢(0)| W" > (0)

oy [0
Jsﬁn j )
o For a 1D-SHO we know that

[ R
<T/J}O)’X‘¢§10)> = 2mw{\/ﬁfsj,n—l +vn+ 15j,n+1}

with this we have

s

|¢(1)> _9E0 [ hn + qko h(” + 1) W}(O) )

hw n+1



Perturbation Theoretic Solution

@ Second order correction:

(0) (0)
ED % | (¢ |V|¢) )

©
7 (B —E)

4O
ey O
i (B —E)

@ Using the previous result we have

Ergz):ngg{ hon R n—i—l}

2mw hw  2mw hw
o
2 mw?

@ Which is nothing but the exact correction. We shall not
consider the second order correction to the wave function
|1/}£,2)> because the calculation is tedious.



Perturbation Theoretic Solution

@ For n =0, let us compare |¢$,1)> to the first order terms in the
exact wave function ¢p—g(x’)

Yo(x) = (mw> I 2%

hm
q2 Eg qEgpx

o(x') = ho(x)e” 2w e hw

to first order in Eq

_a 8
e 2hw RS 1

qEpx Eox
0 +qo

e hw =

hw
Yo(x') = o) + volx) I 20x
h 1 mw 1 /h
X = mw2<2\/hx> =5\ e 1)

- mw
where § = x/



Perturbation Theoretic Solution

e So

but

with this

Yo(x') = Yo(x) + 921/ ya (x)

Thus the correction term

Ao(x) = T2 [

agrees perfectly with |¢n ) for n = 0. One can prove this
result for any value of n.



Quadratic Stark Effect of Hydrogen Atom

@ We know that the Hamiltonian of the hydrogen atom is

h? e?
Hy= —— V2 _ = 4
0 2mV r ( 0)

o It satisfies the time independent Schrddinger equation

H0|77Z)nlm> = E£O)‘wnlm> (41)

o If we apply a static electric field on the hydrogen atom, its
energy levels get shifted, and the phenomena is called the
Stark effect.

@ As a matter of fact this phenomena is observed not just for
hydrogen, rather for all atoms, molecules and solids.

@ It is seen that for non degenerate levels, the energy level shift
is proportional to square of strength of the E-field and the
phenomena is called Quadratic Stark effect.



Quadratic Stark Effect(contd.)

@ For certain degenerate levels, one observes a shift linearly
proportional to the field, and then the phenomenon is called
Linear Stark effect.

@ The ground state of the hydrogen atom is non degenerate(
except for spin degeneracy, which plays no role here), therefore
it will exhibit Quadratic Stark effect whose theory we will
develop next.

o Let us suppose that the external electric field is in the z
direction £ = Epk, and electronic charge is ¢ = —e, then the
modified Hamiltonian will be

H = Hy + eEpz (42)
@ Thus, the perturbation term is given by
V = eEyz (43)

and the question is, can this be considered small ?



Quadratic Stark Effect(contd.)

@ Most electric fields produced in the lab are much smaller than

the strength of internal electric fields, which are ~ 101! V/m.

@ Therefore, the assumption of perturbation being much smaller
than the original Hamiltonian is valid.

@ For the n-th energy level, the correction up to second order in
the electric field is

(0) , [{n| V] K)[?
En=Ep  + (n|V|n) + > —oi—ts E0 g0
k#n ”

) O @ 1 223 1Y (O)IZIwk >|
= Ey”) + eEp(hy) |z |1y EgY ok
kn (En k )
(44)
@ Let us calculate perturbative corrections to the ground state of
hydrogen atom, so that

) = |1s) (45)



Quadratic Stark Effect(contd.)

e Using this in Eq.(44)

(1s|z w 2
Eis = EY + eEy(1s|z|1s) + €2 E2 Z I (0|) | (gl) (46)
k;ﬁn

@ But (1s|z|ls) = 0 because is a state has a definite parity, and
z has odd parity.

@ Thus, we will have corrections only in the second order of
perturbation theory.

@ Let us compute the second order terms which are non zero.

o All hydrogen atom eigenstates can be written in the form
[nIm). Let us compute

(nlm|z|n’I'm"y = (nIm|X2|n'I'm") (47)



Quadratic Stark Effect(contd.)

@ Using Wigner-Eckart theorem, and the short notation X; = X,
we have

(nlm|z|n"l'm"y = (I'1m'0|/'LIm)(nl|| X||n"I")

e Clearly m" = m for non-vanishing CGC. Therefore, non zero
matrix elements will correspond to

(nlm|z|n'I'm"y = (I'LmO|l'LIm) (nl||X||n'I")
@ In our case nflm =100 = 1s

= (1s]2[p\?) = (100|X|n' /' m')
(I'100]/'100) (10| X||n"I")



Quadratic Stark Effect(contd.)

@ As per selection rule (//100(/'100) is non zero only if /' =1,

and (1100|1100) = —%.

@ This means that (1s\z\wl((0)> will be non-zero only for p-type
states with m =0, i.e.

(1s|z[ ) = (1s[z|n'pm’ = 0)

- —\Euouxun'm

@ Thus, apart from the restriction that sum is only over p-type
states, we have no other way to truncate the sum.
@ Thus, sum over k will include an infinite number of terms

containing not just bound p states, but also positive energy
continuum p-type states.



Quadratic Stark Effect(contd.)

@ There are several ways to tackle this problem:

© One can convert the second order energy correction infinite
series into a differential equation which can be solved exactly.

© One can include a large number of terms in the series using a
computer, and sum of them till a desired level of convergence
achieved. The terms will decrease in magnitude with
increasing k because E{, — EP( the denominator) will increase.

© One can find an upper bound on the contribution of the
second order term using a mathematical trick which we
demonstrate next

—e E2 Z | |Z|¢k >|

k#1s 1s 7Ek )

It <°>|z|wk )2
<EE Y
— (£ g0y £9)



Quadratic Stark Effect(contd.)

e But )
El(g) B E(O) e {1 1} - 3e

2p 230
where ag =Bohr radius

@ Now numerator is

S 1wl 2 = S @120 (02w (D)
k

k

@ k also includes the contribution of the 1s term and also terms
corresponding to / # 1 orbitals because (@bn,m\zwn,m) = 0.

@ Using the fact that ), ]z/zk >< ko)\ = [, we obtain
S WD) P = 212210 )
k

@ It can be shown

(12210 = 2



Quadratic Stark Effect(contd.)

o
2EC8
El(.z) < -2 30280 3(2)
2e3
8E,
El(g) < —7230

o Because the leading term correction to energy is o EZ, this
effect is called Quadratic Stark Effect.



Wave Function Renormalization

@ So far we have assumed that the perturbed wave function is
intermediate normalized

W) =1

@ However, if we want to normalize |¢,), we have to compute
the quantity (¢n|1,), and then multiply the wave function by
its inverse square root, to obtain the normalized wave function
%)

W_n> = Zl/2|1/)n> (48)

where
1

= (alton)

@ Let us compute Z to the second order

(49)

(alton) = @A X20P 1 DA A20 P 1)



Wave Function Renormalization(contd.)

@ Using the fact that _
(i) =0

e We obtain to second order in \2

(Wnltbn) = 1+ A2 (M) +

0
-1eeyl I w<°’|vw< >>\ (50)
o (B — Ek Y2
@ Thus, we note that |¢),) is normalized to first order in A.
@ Now, for small )\, to second order
L, V)2
<¢)n|¢n Z (0) (0))
0 K ¢n ‘VW}k >|
= D @OV + 22



Wave Function Renormalization(contd.)

or

7 = % (51)

o

@ Although we have derived this result to second order, but it is
an exact result true to any order.

e Note that Z = |(1/J$,0)|En>|2, that is the probability of finding
the n-th unperturbed state, in the perturbed state.



Degenerate Perturbation Theory

@ Let us assume that the n — th energy level of the unperturbed
Hamiltonian is g-fold degenerate

Hol'Dy = EXp @) where i =1,2,...,8  (52)

o If we try to calculate the first-order wave function correction,
or the second-order energy correction, we have

DV D) w<°>|vw<°’>r ©)
1y = %) ()
; (E£°’—E‘°’ / § EY — EY)

(53)
and

@ _ (3 ! )2 OV [P
Ey) = (54)
; ( Er(IO) B E(o ;; E,(,O) _ E,EO))



Degenerate Perturbation Theory

o Note that in order to compute the corrections |1/),(5)> and E?,
we have to perform summation over g-1 degenerate levels (see
first terms of Eq.(53) and Eq.(54)) leading to vanishing
denominators and divergent contributions.

@ The way to handle this problem mathematically is to make the
divergent first terms of Eq.(53) and Eq.(54) vanish, by
ensuring that <¢$)’V‘1/}£?)> = 0; i.e., by making the
numerators also vanish.

@ The straightforward way to achieve this is to diagonalize V
within the g-dimensional subspace, and then use the eigen
functions of V as the new wave functions instead of \1/1,(,?)>.
Let us see how this works.

@ Let the representation of V within degenerate subspace defined

as

(n) _ ,,(0) (0)
Vi = Wy VIY,) (55)



Degenerate Perturbation Theory

@ Then the g x g dimensional Matrix V(") defined as

vio = e (56)
v v

is clearly hermitian because V is a Hermitian operator.
o Thus V(" is diagonalizable with the real eigenvalues and
mutually orthogonal eigenvectors

VO ) = Voo i) (57)

and
(W (°)|¢(°)> =05 for 0,3 =1,2,....g (58)

where eigen vectors |¢$,%?> are clearly linear combination of
[450)'s
© _ % ()},
[ne) = D Cia [t} (59)

i=1



Degenerate Perturbation Theory

@ where coefficients C,-(O'Z) are eigenvectors of matrix V(")

vy o v c e
S =Vl (60)
Vi vy Cen) Cew)

e using Eq.(57) and Eq.(58), it is obvious that
R IVIRd) = Wi VOlrd)
= Vi w1l
= Vrgclx)(saﬁ



Degenerate Perturbation Theory

@ Now, if for computing the perturbation theoretic corrections to
the n — th level we use the kets |¢,(&)>,a =1,...,g instead of
|1/)E,?)>, we have

Holt) %) = Z C\ Holu (D)
Z ! ")En W’nj
()

or

Holw ) = E i) (61)

@ Thus Wr(r%)) just like |1/)E,?)> are still eigenvectors of the

unperturbed Hamiltonian Hy, with the same eigenvalue E,SO).



Degenerate Perturbation Theory

@ The first order perturbation correction to the energy will be

ESs) = (WRVIBE) = Vaa (62)

e Using Eq.(53) and Eq.(54) to compute \1/}5,2} and E,(,z), we
have

WIVIR) @OV )
L)) = —rw,,> k)
%(EE" g0y ™ gn(ES(’)—E )k

but both the numerator and denominator of the first term
vanish, so we take that to be zero, leading to

i =3 Mw ) (63)

and

[$na) = [50) + AS) + ... (64)



Degenerate Perturbation Theory

@ Similarly we will have

E,(,?)) _ Z |< nﬂ’V’¢na> Z ’ wk ’\/Wmﬂ

(0) (0) (0) (0)
E; E; E —E
B#a ( k#n k ) (65)

w |V|w<°)>|
"2 (€9 E0)

and

(0)

|74

E e = E(O) +)\Vna +)\2§ : ‘ wk | |77/)(0)>| (66)
k#n (E E )

o Note that Eq.(63) and Eq.(64) do not involve summations
over the states of degenerate subspace(|t/ng)) because of
vanishing numerator, therefore, the sums will not be divergent.



Degenerate Perturbation Theory

@ In case the eigenvalues of V matrix (V,,) in the degenerate
subspace still have some degeneracies then it is not clear to
which |1[)£,%?> will the perturbed wave function reduce in the
limit A — 0.

@ Apart from this ambiguity, rest of the problems related to the
divergences have been resolved in this theory.



Example: Linear Stark Effect for n=2 (H-atom)

o If the electric field of strength Ey has been applied in the z
direction, then as discussed earlier in the context of
Quadratic Stark effect, the perturbation term in the
Hamiltonian will be given by

V = eEoz

o Ignoring the spin, n = 2 level of the hydrogen is 22 = 4—fold
degenerate with the unperturbed degenerate states
125), 12p0), |2p1), |2p—1), where subscripts associated with the
p orbitals indicate the m values. For this Subspace we define
the order basis as

(67)



Linear Stark Effect for n=2(H-atom)

@ Now we have to construct and diagonalize the V operator in
this basis.

@ Because all are our basis States have definite parity, so as
discussed earlier the diagonal Matrix elements with respect
them will vanish

Vii=(ilV|i)=0for i=1,...,n
o Additionally, using the Wigner-Eckart theorem
(1|V|3) = \/feEo<1100\1100><20|r\21)
=0 (CGC vanishes)

@ For the same reason, the following matrix elements also vanish

(1]V]4) = 2|V[3) = (2[V]4) =0



Linear Stark Effect for n=2(H-atom)

@ Thus the only off-diagonal matrix elements of V which do not
vanish are

A|V[2) = (2|V|1) = \/?eEo<1100|1100>(20Hr|21)

@ On computing the CGC, and the reduced matrix element, one
obtains

[(1]V[2) = (2]V[1) = —3eFoa | (68)

@ Thus the V matrix is obtained to be

0 —3eano 0 0

V= —3ean0 0 0 0
o 0 0 0 0

0 0 00



Linear Stark Effect for n=2(H-atom)

@ Clearly only first two eigenvalues of the matrix will be non zero
which can be obtained by diagonalizing the smaller Matrix

V= 0 —3eano
- —3eano 0

which has eigenvalues
)\1’2 = :|:36an0

with the eigenvectors

=) = 55 (5

e =169 = 75 (1)) = {1251 - 2o}



Linear Stark Effect for n=2(H-atom)
@ So the four-fold degeneracy of n = z level is lifted as below
ED = E% 4 3¢eFpag
EY) = EL — 3eEya

ey = £) = £

@ Thus the degeneracy of two levels |2s) and |2pg) is lifted,
while the other two levels |2p;) and |2p_1) are still degenerate
as shown

@ However with these states one can do second order
perturbation theory because in the new basis all off-diagonal
Matrix elements of V vanish. The new basis is

) = {129 + 2o |

M) = 2{|2s> - |2po>}
|A3) = [2p1)

[Aa) = |2p_1)



Linear Stark Effect for n=2(H-atom)

@ This phenomena is called Linear Stark effect because the
lowest order energy shifts are proportional to Ey, as against EZ
for the state |1s). This linear shift will be larger in magnitude
because Ey is small. Note that linear shift is possible in this
case only because of degeneracy of the n = 2 level.
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