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Introduction

Suppose we have a time dependent Hamiltonian, then we
know that the system under consideration will satisfy the time
dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1)

This equation can be integrated for the time part for a few
simple systems such as: (i) when H(t) is time independent,
(ii) a two level (spin=1

2
) system coupled to a uniform

magnetic �eld, and a radio frequency magnetic �eld, and some
other simple cases.

However, for a vast majority of cases it is very di�cult or
essentially impossible to integrate Eq.(1), requiring the use of
approximations.

One such approach is based on perturbation theory, which is
what we discuss next.



For the purpose, we assume that the Hamiltonian H(t) is of
the form

H = H0 + V (t) (2)

where H0 is time independent for which the Schrödinger
equation has been solved

H0 |ψn〉 = En |ψn〉 (3)

we choose a compact notation for kets |ψn〉 ≡ |n〉, so that

H0|n〉 = En|n〉 (4)

Next we develop a perturbation theoretic approach to obtain
solutions of Eq.(1) for a Hamiltonian of the form of Eq.(2).

We provide two separate derivations for that, one based upon
interaction picture, while the other one based upon a linear
combination of basis functions.



Interaction Picture Derivation

For the purpose we de�ne a new state ket |ψ̃(t)〉, related to
the ket |ψ(t)〉 ( whose expression we have to obtain), by a
unitary transformation

|ψ̃(t)〉 = e i
H0t

~ |ψ(t)〉 (5)

⇒ |ψ(t)〉 = e−
iH0t

~ |ψ̃(t)〉 (6)

Substituting this in Eq.(1) with the Hamiltonian of the form
Eq.(2)

i~
d

dt

(
e−

iH0t

~ |ψ̃(t)〉
)

= (H0 + V (t)) e−
iH0t

~ |ψ̃(t)〉

⇒ i~
{
− iH0

~ e
−iH0t

~ |ψ̃(t)〉+ e
−iH0t

~ d
dt
|ψ̃(t)〉

}
= H0e

− iH0t

~ |ψ̃(t)〉+ V (t)e−
iH0t

~ |ψ̃(t)〉
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Interaction Picture (contd.)

⇒ H0e
− iH0t

~ |ψ̃(t)〉+ i~e−
iH0t

~
d |ψ̃(t)〉

dt

= H0e
− iH0t

~ |ψ̃(t)〉+ V (t)e−
iH0t

~ |ψ̃(t)〉

⇒ i~e−
iH0t

~
d

dt
|ψ̃(t)〉 = V (t)e−

iH0t

~ |ψ̃(t)〉

⇒ i~
d |ψ̃(t)〉

dt
= e

iH0t

~ V (t)e
−iH0t

~ |ψ̃(t)〉

⇒ i~
d |ψ̃(t)〉

dt
= Ṽ (t)|ψ̃(t)〉 (7)

where

Ṽ (t) = e
iH0t

~ V (t)e−
iH0t

~ (8)

Note that the modi�ed state ket |ψ̃(t)〉 satis�es a modi�ed
Schrödinger equation Eq.(7), in which the modi�ed
perturbation potential Ṽ (t) plays the role of Hamiltonian.



Interaction Picture (contd.)

This picture de�ned through unitary transformations of
Eqs.(5) and (8), is called the "interaction picture".

Next, we obtain a perturbation theoretic solution of Eq.(7).
For the purpose we integrate Eq.(7) between the limits (to
some initial time) and t to obtain

|ψ̃(t)〉 = |ψ̃(t0)〉+
1
i~

∫ t

t0

dt ′Ṽ (t ′)|ψ̃(t ′)〉 (9)

Because this equation has the unknown solution |ψ̃(t)〉 on the
right hand side, it cannot be further integrated.

Therefore, we develop an iterative solution by setting
|ψ̃(t ′)〉 ≈ |ψ̃(t0)〉 on the R.H.S

|ψ̃(t)〉 = |ψ̃(t0)〉+
1
i~

∫ t

t0

dt ′Ṽ (t ′)|ψ̃(t0)〉

=

(
1 +

1
i~

∫ t

t0

dt ′Ṽ (t ′)

)
|ψ̃(t0)〉

(10)



Interaction Picture (contd.)

This solution is correct up to �rst order terms in perturbation
V (t). To obtain solution up to second order, we substitute
Eq.(10) on the R.H.S. of Eq.(9), to obtain

|ψ̃(t)〉 = |ψ̃(t0)〉+
1
i~

∫ t

t0

dt ′Ṽ (t ′)|ψ̃(t0)〉

+
1

(i~)2

∫ t

t0

dt ′
∫ t′

t0

dt ′′Ṽ (t ′)Ṽ (t ′′)|ψ̃(t0)〉

(11)
If we de�ne a time ordered product as

T
[
Ṽ (t ′)Ṽ (t ′′)

]
= Ṽ (t ′)Ṽ (t ′′) if t ′ > t ′′

= Ṽ (t ′′)Ṽ (t ′) if t ′ 6 t ′′
(12)

i.e. the term with the "later" time will be on the right, we can
show∫ t

t0

dt ′
∫ t′

t0

dt ′′Ṽ (t ′)Ṽ (t ′′) =
1
2

∫ t

t0

dt ′
∫ t

t0

dt ′′T
[
Ṽ (t ′)Ṽ (t ′′)

]
(13)



Interaction Picture (contd.)

So that to the second order

|ψ̃(t)〉 = T

[
1 +

1
i~

∫ t

t0

Ṽ (t ′)dt ′

+
1

2(i~)2

∫ t

t0

dt ′
∫ t

t0

dt ′′Ṽ (t ′)Ṽ (t ′′)

]
|ψ̃(t0)〉

By iterating the procedure in�nite number of times, we obtain

|ψ̃(t)〉 = Ũ (t, t0) |ψ̃(t0)〉 (14)

where Ũ (t, t0) can be seen as the time evolution operator in
the interaction representation, de�ned as

Ũ (t, t0) = 1 +
∞∑
n=1

1
n!

(
−i
~

)n ∫ t

t0

. . .

∫ t

t0

dt ′1 . . . dt
′
n

× T
[
Ṽ (t ′1)Ṽ (t ′2) . . . Ṽ (t ′n)

]



Interaction Picture (contd.)

leading to the �nal expression

Ũ (t, t0) = Te
− i

~
∫ t
t0

dt′Ṽ (t′) (15)

In case we want to do k-th order perturbation theory, we can
expand Eq.(15) upto k-th order, and perform various
calculations. Eq.(13) and Eq.(15) form the Dyson series
solution of the time dependent perturbation theory.



Linear Combination of Eigenfunctions Approach

In this approach we expand |ψ(t)〉 in terms of eigenfunctions
of H0 as

|ψ(t)〉 =
∑

j aj(t)e−
iEj t

~ |j〉 (16)

Note that e−
iEj t

~ describe the time dependence of |ψ(t)〉 with
respect to H0, therefore, the in�uence of V (t) is contained in
time dependent linear coe�cients aj(t).
Substituting Eq.(16) in Eq.(1), with H(t) given by Eq.(2), we
have

i~
∑
j

{
−

iEj

~
aj(t)e−

iEj t

~ +
daj

dt
e−

iEj t

~

}
|j〉

=
∑
j

(H0aj(t) + V (t)aj(t)) e−
iEj t

~ |j〉

Using
H0aj(t)|j〉 = aj(t)H0|j〉

= Ejaj(t)|j〉



Linear Combination of Eigenfunctions Approach(contd.)

we have∑
j

Ejaj(t)e−
iEj t

~ |j〉+ i~
∑
j

daj

dt
e−

iEj t

~ |j〉

=
∑
j

Ejaj(t)e−
iEj t

~ |j〉+
∑
j

V (t)aj(t)e−
iEj t

~ | aj〉

i~
∑
j

dai

dt
e−

iEj t

~ |j〉 =
∑
j

e−
iEj t

~ V (t)aj(t)|j〉 (17)

On taking inner product of this equation with |i〉 and using
〈i | j〉 = δij , we have

i~
∑
j

daj

dt
e−

iEj t

~ 〈i | j〉 =
∑
j

〈i |V (t)|j〉aj(t)e−
iEj t

~

⇒ i~
∑
j

daj

dt
e−

iEj t

~ δij =
∑
j

Vijaj(t)e−
iEj t

~

i~
dai

dt
e−

iEi t

~ =
∑
j

Vijaj(t)e−
iEj t

~



Linear Combination of Eigenfunctions Approach(contd.)

i~
dai

dt
=
∑
j

Vijaj(t)e
i(Ei−Ej )t

~

Using Ej = ~ωj , and ωij = ωi − ωj we have

i~
dai

dt
=
∑
j

Vijaj(t)e iωij t (18)

De�ning

ã =

a1(t)
...

an(t)

 (19)

Ṽij(t) =

 V11(t) . . . V1n(t)e iω1nt

...
. . .

...
Vn1(t)e iωn1t . . . Vnn(t)

 (20)



Linear Combination of Eigenfunctions Approach(contd.)

where
Vij(t) = 〈i | V (t) | j〉 (21)

We obtain the matrix form of time dependent Schrödinger
equation

i~
dãi

dt
= Ṽ (t)ã(t) (22)

Note that so far we have not employed any approximations, as
a result of which Eq. 22 is an exact representation of the
time-dependent Schrödinger equation.



Time-Dependent Perturbation Theory...

But, this equation is impossible to solve in most cases.

Therefore, next we formulate time-dependent perturbation
theory (TDPT), which allows us to solve Eq. 22,
approximately.

For the purpose, we introduce a perturbation parameter λ,
similar to the case of time-independent perturbation theory, to
write

H0 + V (t) −→H0 + λV (t)

ã(t)→ ã(0)(t) + λã(1)(t) + λ2ã(2)(t) + · · ·
(23)



Linear Combination of Eigenfunctions Approach(contd.)

Eventually, we will set λ = 1.
Substituting Eqs.(22) in Eq.(21), we have

i~

{
dã(0)

dt
+ λ

dã(1)

dt
+ λ2

dã(2)

dt
+ . . .

}
= λṼ (t)

{
ã(0)(t) + λã(1)(t) + λ2ã(2)(t) + . . .

}
On comparing terms order by order in powers of λ, we have

i~
dã(0)

dt
= 0 (24)

i~
dã(1)

dt
= Ṽ (t)ã(0)(t) (25)

i~
dã(2)

dt
= Ṽ (t)ã(1)(t)

or, in general

i~
dã(k)

dt
= Ṽ (t)ã(k−1)(t) (26)



Linear Combination of Eigenfunctions Approach(contd.)

Clearly, Eq.(26) represents a hierarchy of equations which can
be solved iteratively.

Eq.(24) can be integrated right away

⇒ ã(0) = c̃ ≡ constant

where c̃ =

c1
...
cn

 (27)

Substituting Eq.(27) in Eq.(25), we have

i~
dã(1)

dt
= Ṽ (t)c̃



Linear Combination of Eigenfunctions Approach(contd.)

or

i~
dã

(1)
i

dt
=
∑
j

Vij(t)cje
−iωji t

ã
(1)
i (t) =

1
i~
∑
j

∫ t

t0

dt ′Vij(t
′)cje

−iωji t′ (28)

By substituting this expression for ã(1)i (t) in the equation for

ã
(2)
i (t), we can obtain an expression for ã(2)i (t), which will
surely be more complicated.

By employing this iterative procedure, successive higher-order
equations can also be solved. Note that as the order becomes
higher, the complexity of the underlying equations will increase
tremendously.

Next, we apply TDPT to some speci�c cases



Example(I): Constant Perturbation- Fermi's Golden Rule

Let us assume that the time-dependent potential V (t) is of
the form

V (t) =

{
0 for t < 0

V for t ≥ 0
(29)

that is the potential V (t) is turned on abruptly at t = t0 = 0,
and its value V is time independent, although it may be
dependent on other variables such as p, r etc.
We also assume that at the initial time t = 0, the system was
in one of the eigenstates |n〉 of H0 i.e.,

aj(0) = cj = δnj (30)

Using Eq.(29) and Eq.(30) in Eq.(28), we have

ã
(1)
i (t) =

1
i~

∫ t

t0

dt ′e iωint
′〈i | V | n〉

or

ã
(1)
i (t) = −(e iωint − 1)

~ωin
〈i | V | n〉



Example(I): Constant Perturbation(contd.)

And we can restrict ourselves to the �rst order in perturbation
theory, i.e., we do not include ã

(k)
i (t) terms for k ≥ 2.

The transition probability from state n to some other state i ,
at time t is obviously

Pn→i (t) = |ã(1)i (t)|2 =
(e iωint − 1)(e−iωint − 1)

~2ω2
in

|〈i | V | n〉|2

or

Pn→i (t) =
(2− e iωint − e−iωint)

~2ω2
in

|〈i | V | n〉|2

=
2(1− cosωint)

~2ω2
in

|〈i | V | n〉|2

=
4 sin2(ωint/2)

~2ω2
in

|〈i | V | n〉|2

or

Pn→i (t) =

(
sin ωint

2
ωin
2

)2
|〈i | V | n〉|2

~2



Example(I): Constant Perturbation(contd.)

Using the fact that

Ein = Ei − En = ~ωin

we can write

Pn→i (t) =

(
sin Eint

2~
Ein

2

)2

|〈i | V | n〉|2 (31)

If we assume that |〈i | V | n〉|2 changes slowly w.r.t Ei , the
plot of Pni (t) w.r.t Ei looks as below



Example(I): Constant Perturbation(contd.)

from this curve it is obvious that:
1 Most of the probability at a given time t is contained within

the central maximum

|Ei − En| ≤
2π~
t

2 The height of central peaks grows as t2 because En → Ei for

Ein → 0⇒ sin2 Eint

2~ ∼
E
2

in
t
2

4~2
If we take ∆E = Ein, then from point (1), it is obvious that
the transition probability dominates for the states which satisfy

∆E∆t ∼ 2π~

where ∆t is the time for which the perturbation V has been
active. From point (1) above it is also obvious that in the
large time limit (t →∞) transition will happen only to those
states with the energies Ei = En, i.e., for which �nal energy is
same as initial energy.



Example(I): Constant Perturbation(contd.)

If the �nal energies Ei form a continuum, the total transition
probability to all allowed �nal states is

Pn(t) =
∑
i

Pn→i (t) =

∫
dEiρ(Ei )Pni (t)

where ρ(Ei ) ≡density of states, i.e., the number of states per
unit energy range

Assuming that the matrix elements 〈i | V | n〉 do not vary
much with respect to Ei , we have

Pn(t) = |〈i | V | n〉|2
∫

dEiρ(Ei )

(
sin Eint

2~
Ein

2

)2

(32)

If we take the long time limit t →∞, then using the result

limα→∞
1
π

sin2 αx

αx2
= δ(x)



Example(I): Constant Perturbation(contd.)

we obtain

limt→∞

(
sin Eint

2~
Ein

)2

−→ πt

2~
δ(Ein) (33)

on Eq.(33)−→Eq.(32) we have

⇒ Pn(t) =
2πt
~
|〈i | V | n〉|2ρ(Ei )

∣∣∣∣∣
Ei=En

(34)

Thus the transition rate to the levels Ei will be independent of
t and it will be non zero only if Ei = En

Γn = limt→∞
dPn(t)

dt
=

2π
~
|〈i | V | n〉|2ρ(Ei = En) (35)



Example(I): Constant Perturbation(contd.)

This is the famous Fermi's Golden Rule. To a single level Ei ,
this formula can be written as

Γn→i =
2π
~
|〈i | V | n〉|2δ(Ei − En) (36)

Note that Fermi's Golden Rule implies that under a time
independent perturbation, the transitions are possible only to
those �nal states for which the energy of the �nal state is
same as that of initial state.



Example(II): Harmonically Varying Perturbation

Let us assume a perturbation which was non-existent till time
t = t0 = 0, and varies sinusoidally these on

V (t) =

{
0 for t < 0

V cosωt for t ≥ 0
(37)

For t > 0, writing V (t) = V
2

(e iωt + e−iωt) and assuming that
at t = 0, system was in the state |n〉, we have from Eq.(28)

ã
(1)
i (t) =

〈i | V | n〉
2i~

∫ t

0

dt ′
[
e i(ωin+ω)t

′
+ e i(ωin−ω)t

′
]

=
〈i | V | n〉

2i~

[
e i(ωin+ω)t

i(ωin + ω)
+

e i(ωin−ω)t

i(ωin − ω)

]
(38)

As before, the transition probability will be
Pn→i (t) = |a(1)i (t)|2



Example(II): Harmonically Varying Perturbation

When we calculate this probability using Eq.(38), in addition to
mod squared terms for the two terms, we will also have cross
terms which will be oscillatory in the limit t −→∞, and will
average out to zero. Thus the transition rate will be just the
sum of mod squared of the individual terms which will give rise
to delta functions in the limit t −→∞, as before, leading to

Γn→i =
2π
~
|〈i | V | n〉|2

4
[δ(Ei − En − ~ω) + δ(Ei − En + ~ω)]

(39)

This rate also has the same form as Fermi's Golden Rule,
and the two delta functions enforce the conservation of total
energy including those of photons of energy ~ω. The �rst term
corresponds to absorption of a photon of energy ~ω by the
system, while the second term corresponds to emission of a
photon of energy ~ω by the system.



Example(III): Interaction of Radiation with Matter

Based upon the theory developed in the previous part, we will
develop the formalism required to describe the interaction of
radiation with matter.

For us matter implies any system such as an atom, a molecule,
a quantum dot or a solid.

In the present treatment, we will restrict ourselves to treating
�nite systems, with the discrete energy levels, although the
treatment can be easily generalized to bulk systems which
exhibit energy bands.

We assume that the time independent Hamiltonian H0

describing the matter satis�es

H0|ψn〉 = En|ψn〉

or
H0|n〉 = En|n〉



Interaction of Radiation with Matter

where H0 is of the form

H0 = − ~2

2m
∇2 + V (r) =

p2

2m
+ V (r) (40)

This system is irradiated by light (electromagnetic radiation)
whose vector potential is given by

A(r, t) = A0êe
i(k.r−ωt) + c.c. (41)

above c.c. implies complex conjugate, while ê is a unit vector
in the the direction of polarization of the incident light.

From Eq.(41) it is obvious that we are assuming linearly
polarised (or plane polarised light).

Note that this amounts to a semi classical theory in which the
matter is treated quantum mechanically, while the radiation is
treated classically.



Interaction of Radiation with Matter

We include the interaction of radiation with matter using
"minimal substitution" to obtain the perturbed Hamiltonian

H =
(p + eA)2

2m
+ V (r) (42)

Upon expanding the �rst term, we obtain

H =
p2

2m
+

e

2m
p · A +

e

2m
A · p +

e2A2

2m
+ V (r)

or

H = H0 +
e

2m
p · A +

e

2m
A · p +

e2A2

2m
Each term in the Hamiltonian is an operator, which will act on
a wave function ψ (say).



Interaction of Radiation with Matter

Let us check the action of second term on ψ

e

2m
p · Aψ = − ie~

2m

∑
i

∂

∂xi
(Aiψ)

= − ie~
2m

(∑
i

∂Ai

∂xi

)
ψ − ie~

2m

∑
i

Ai
∂ψ

∂xi

= − ie~
2m

(∇·A)ψ − ie~
2m

(A ·∇)ψ

On using Eq.(41) for A, we obtain

∇·A = ik · êA0e
i(k.r−ωt) − ik · êA0e

−i(k.r−ωt)

but k · ê = 0 because light is always transversely polarized

⇒∇·A = 0

⇒ e

2m
p · Aψ = − ie~

2m
(A ·∇)ψ =

e

2m
A · pψ

⇒ p · A = A · p, for transversely polarized light



Interaction of Radiation with Matter

Thus

H(t) = H0 +
e

m
A · p +

e2A2

2m

If we ignore terms second order in A, i.e., e2A2

2m
, because they

are smaller in magnitude than the �rst order term e
m
A.p, we

have

H(t) = H0 + V (t)

where V (t) =
e

m
A · p (43)

the expanded form of the time-dependent perturbation V (t) is

V (t) =
e

m
A0e

ik.rê · pe−iωt +
e

m
A0e

−ik.rê · pe iωt



Interaction of Radiation with Matter
or

V (t) = V1(r)e−iωt + V2(r)e iωt

where

V1(r) =
e

m
A0e

ik·rê · p

V2(r) =
e

m
A0e

−ik·rê · p

(44)

Note that the form of V (t) is very similar to the form of the
harmonic perturbation considered in the previous section.
Thus, using those results, we can directly write the expression
for transition rate

Γn→i =
2π
~

{
|〈i | V1 | n〉|2δ(Ei − En − ~ω)

+ |〈i | V2 | n〉|2δ(Ei − En + ~ω)
}

=
2πe2A2

0

~m2

{
|〈i | e ik.rê.p | n〉|2δ(Ei − En − ~ω)

+ |〈i | e−ik.rê.p | n〉|2δ(Ei − En + ~ω)
}

(45)



Interaction of Radiation with Matter

Assuming that ω ≥ 0, in the previous equation, the �rst delta
function will be satis�ed only if Ei ≥ En, while in the second
term the condition Ei ≤ En must be satis�ed.

This means that the �rst term will apply to the case of
absorption of a photon of energy ~ω = Ei − En, while the
second term corresponds to emission of a Photon of energy
~ω = En − Ei .

Next we concentrate only on the absorption process (Ei > En),
and drop the second term.

For handling emission process, one will have to drop the �rst
term. Thus,

Γ
(abs)
n→i =

2πe2A2
0

~m2
|〈i | e ik·rê · p | n〉|2δ(ω − ωin) (46)

where we have converted energy delta function into a
frequency one, leading to an extra term to the denominator
and ωin = Ei−En

~



Interaction of Radiation with Matter

If I0 is the photon �ux (number of photons per unit area per
unit time), then the intensity of the radiation will be (the right
hand side of this equation is obtained using the concept of
Poynting vector)

I = ~ωI0 =
1
2
ε0cE

2

using E = − 1
c
∂A
∂t

~ωI0 = 2ε0cω2A2
0 (47)

And if the corresponding absorption cross section is σ(ab)n→i (ω),
then

Γn→i = I0σ
(ab)
n→i (ω)

using Eq. 47

⇒ σ
(ab)
n→i (ω) =

Γn→i

I0
=

πe2

~m2ε0c
|〈i | e ik.rê · p | n〉|2δ(ω − ωin)



Interaction of Radiation with Matter

Using the de�nition of the �ne structure constant α

α =
e2

4πε0~c

⇒ σ
(ab)
n→i (ω) =

4π2α
m2ωin

|〈i | e ik.rê · p | n〉|2δ(ω − ωin)

Let us simplify the matrix element 〈i | e ik·rê · p | n〉. We
approximate

e ik·r ≈ 1 + ik · r + . . .

≈ 1 (48)

This approximation is good whenever k · r = 2πn̂·r
λ << 1. This

is valid whenever |r| << λ, i.e., the size of the system is much
smaller than wavelengths. For microscopic systems

|r| ∼ Å

λ ∼ 103Å for visible range and

beyond(infrared ,microwave, . . .)



Interaction of Radiation with Matter

For such systems ⇒ |r|
λ << 1 and approximation (48) will be

good. Now

Min = 〈i | e ik·rê · p | n〉 = 〈i | ê · p | n〉

But for any H0 of the form of Eq.(40), we have

1
i~

[r,H0] =
1
i~

[
r,

p2

2m

]
+

1
i~

[r,V (r)]

=
1

i~2m
[
r, p2

]
+ 0

=
2i~p
i~2m

=
p
m

⇒ p =
m

i~
[r,H0]

⇒ 〈i | p · ê | n〉 =
m

i~
〈i | [r · ê,H0] | n〉



Interaction of Radiation with Matter

We have

〈i | [r · ê,H0] | n〉 = 〈i | r · êH0 − H0r · ê | n〉

using

〈i |H0 = Ei 〈i |
H0|n〉 = En|n〉

⇒ 〈i | p · ê | n〉 =
m(Ei − En)i

~
〈i | r · ê | n〉

= miωin〈i | r · ê | n〉

Under this approximation

σ
(ab)
n→i (ω) = 4π2αωin|〈i | r · ê | n〉|2δ(ω − ωin)

Note that the dipole moment for the electrons d = −er

⇒ σ
(ab)
n→i (ω) =

4π2αωin
e2

|〈i | d · ê | n〉|2δ(ω − ωin)



Interaction of Radiation with Matter

Thus the cross section depends on the transition matrix
elements of the electric dipole operator, therefore,
approximation (48) is called electric dipole approximation.
Because d is an odd parity operator, for inversions symmetric
systems, states |i〉 and |n〉 should have opposite parity for the
dipole matrix element din 6= 0. For example in atoms optical
transitions are possible only between states whose angular
momentum di�er by one unit(∆l = 1), because these states
will have opposite parities (−1)l . Total absorption cross
section for state |n〉 is de�ned as

σ
(ab)
n (ω) =

∑
i

σ
(ab)
ni (ω)


